
Winter 2022 Term 2 (January 19, 2023)

Tony Mason (fsgeek@cs.ubc.ca), Lecturer

CPSC 416 Distributed
Systems

2

Logistics

3

Andy Hsu (andy.hsu@alumni.ubc.ca)

Hamid Ramezanikebrya (hamid@ece.ubc.ca)

Jonas Tai (jonastai@student.ubc.ca)

Cathy Yang (kaiqiany@student.ubc.ca)

Teaching Assistants

mailto:andy.hsu@alumni.ubc.ca
mailto:hamid@ece.ubc.ca
mailto:jonastai@student.ubc.ca
mailto:kaiqiany@student.ubc.ca

4

Remember: Use Piazza for all official course-related communications
• Not on Piazza? Not official.
• Canvas “comments/messages” are not monitored

Office Hours:

Office Hours

Who When Where
Tony Monday 14:00-15:00

Wednesday 16:00-17:00
Discord

Andy Thursday 19:00-20:30 Discord
Hamid Friday 16:30-18:00 Kaiser 4075
Jonas Thursday 13:00-14:00 Online (see

Piazza)
Cathy Friday 09:00-10:30 X237

5

This week
• Self-Assessment (Thu @ 17:00)

Next week
• Tuesday - No class
• Capstone Project code due (Wed @ 23:59) – link to repo, or archive, submit on Canvas
• Thursday – Optional in-class final
• Capstone Reports + Presentation due (Thu @ 23:59) – accepted (without penalty) until 2023/12/22.

Final exam: December 22, 2023 @ 19:00.

Note:
• You are strongly encouraged to collaborate with others on this
• You should use tools at your disposal to answer these questions
• Do not forget to submit it.

Assessment

6

Required:
• Distributed Snapshots: Determining Global States of Distributed Systems

Recommended:
• Distributed Computing: Principles, Algorithms, and Systems (Chapter 4)
• Distributed Systems: Principles and Paradigms (See 8.6.2)

Reading

http://lamport.azurewebsites.net/pubs/chandy.pdf
https://eclass.uoa.gr/modules/document/file.php/D245/2015/DistrComp.pdf
https://vowi.fsinf.at/images/b/bc/TU_Wien-Verteilte_Systeme_VO_%28G%C3%B6schka%29_-_Tannenbaum-distributed_systems_principles_and_paradigms_2nd_edition.pdf

7

Today’s Failure

8

Began December 21, 2022
Ended December 31, 2022 (sort of)

Root causes
• Scaling limits
• Weather delays (“perfect storm”)
• Manual processes (calling staff manually to redirect/reschedule)
• Under-investment

• Scheduling Software was more than 20 years old
• Not resilient

Not unique, either, since most major airlines have had similar problems.

Southwest Airlines Meltdown

9

$821 million charge for disruption

[T]he system's operations have not changed much since the 1990s.

Why Southwest Airlines is struggling so much to accommodate passengers recently

The Shameful Open Secret Behind Southwest’s Failure
(Note that this points out that this is not the first time they’ve had issues, just the worst.)

Southwest Airlines Meltdown (Optional Reading)

https://thestack.technology/southwest-airlines-technical-debt-meltdown-warnings/
https://www.dailymail.co.uk/news/article-11577481/Southwests-outdated-technology-blame-travel-chaos-grounded-87-flights.html
https://www.reddit.com/r/bestof/comments/zwd1fq/u4sammich_explains_why_southwest_airlines_is/
https://www.nytimes.com/2022/12/31/opinion/southwest-airlines-computers.html

10

Lesson Goals

11

Understand challenges of global state detection

Explore algorithms for capturing distributed snapshots
• Actual state
• Possible states

Consider stable properties

Distributed Systems

12

Process and Channels
• Process state = most

recent event
• Channel state = inflight

messages

State transitions:
• Process change =

distributed state change

Global State Model

13

Any valid sequence of events

𝑒𝑒11, 𝑒𝑒12, 𝑒𝑒21, …
Versus:

𝑒𝑒11, 𝑒𝑒21, 𝑒𝑒31, 𝑒𝑒12, …

Actual and observed

Run

14

Cut: snapshot across processes

Distributed System State

15

Cut: snapshot across processes

Consistent cut: obeys causality

Inconsistent cut: cannot guarantee causality:
• Message send missing
• Message receipt observed
• C’ inconsistent
• C consistent

Distributed System State

16

External observer
• Stops the system
• Captures the state
• Resumes the system

Global snapshot is consistent

Question: can we get a consistent cut without a global observer

If we can then we won’t need an external observer

Distributed System Snapshot

17

Process:
• Records any message sent before its snapshot
• Must not record any message sent after its snapshot

Snapshot requests are messages sent between processes.

Recording Events

18

Do not rely upon an external observer
• No instantaneous snapshot

Do not have a global clock
• Ignore Spanner

Network variability
• No node in the network can reliably define event order

Distributed Systems State Challenges

19

Decoupled processes can perform operations in arbitrary order.

Deterministic operations are easy

Non-deterministic operations: event order is not known

Network can make this happen

Non-determinism in Distributed Systems

20

Processes: independent actors within the
system

Channels: directed, first-in first-out (FIFO), no
errors

Formalize our model

21

Goal is to find a consistent cut with only processes and channels

Consistent Cut Algorithm

22

Process snapshots

23

Process q records state 𝑆𝑆𝑞𝑞1 sends a marker to Process p

Initiate snapshot

24

Process p records its state as 𝑆𝑆𝑝𝑝2 and the channel state is empty.

Capture second snapshot

25

Process q records snapshot state as 𝑆𝑆𝑞𝑞3

Global state is ((𝑆𝑆𝑝𝑝2, 𝑆𝑆𝑞𝑞1),(𝑚𝑚3, 0))

Complete snapshot

26

Initiator
• Saves local state
• Sends snapshot request (“marker”) on all its channels

Non-initiators:
• Receive first marker

• Save state
• Send marker on all its channels
• Resume execution
• Save incoming messages
• Wait for another marker

Guarantees a consistent global state

Snapshot Algorithm (Generalized)

27

No failures
• Messages are intact
• Messages arrive only once

Communications are FIFO ordered, unidirectional

Processes capture:
• Local state
• State information received on channels

Note: this algorithm does not change normal execution of processes

Algorithm Assumptions

28

P as initiator:
• Records its own state
• Sends marker message on all its channels
• Resumes sending ordinary messages

P as non-initiator:
• If no recorded state:

• Record its own state
• Create empty message list

• If recorded state:
• Message list = messages received since recording its state (modulo marker)

Algorithm: Process Perspective

29

Does not guarantee we get a state that existed

Guarantees we get a consistent state.

That is enough for us: consistency is key.

In fact, it gives us a possible global state.

Chandy-Lamport Algorithm

30

This idea of partially ordered sets is complex

The field of studying these is known as lattice theory.
• Used for some data structures in distributed systems (e.g., CRDTs and MRDTs)

Additional Readings:
 Notes on Lattice Theory (Chapters 1-6)
 Notes on Lattice Theory (Chapters 7+)

Lattice Theory

https://en.wikipedia.org/wiki/Lattice_(order)
http://www.math.hawaii.edu/%7Ejb/lat1-6.pdf
https://web.archive.org/web/20160303170748/http:/www.math.hawaii.edu/%7Ejb/lat7-12.pdf

31

Permutations:
• Σ10, Σ11,Σ^21 for run 𝑒𝑒11, 𝑒𝑒21, 𝑒𝑒12 …
• Σ01, Σ11, Σ^21 for run 𝑒𝑒21, 𝑒𝑒11, 𝑒𝑒12 …

Equivalent: both end in global state Σ21

Causal relationships are preserved

These are isomorphic.

“If I didn’t see the details and ended up with
the same result, it didn’t matter.”

Run Permutations

32

Let
• 𝑆𝑆∗ be the recorded state
• 𝑆𝑆𝑒𝑒𝑞𝑞 be the sequence of distributed computations performed by the system
• 𝑆𝑆𝑖𝑖 is the true initial state of the system
• 𝑆𝑆𝑗𝑗 is the true final state of the system

Then:
• 𝑆𝑆∗ is reachable from 𝑆𝑆𝑖𝑖
• 𝑆𝑆𝑗𝑗 is reachable from 𝑆𝑆∗

• ∃ a computation 𝑆𝑆𝑒𝑒𝑞𝑞∗ which is a permutation of 𝑆𝑆𝑒𝑒𝑞𝑞
• Either 𝑆𝑆∗ = 𝑆𝑆𝑖𝑖or 𝑆𝑆𝑖𝑖 occurs before 𝑆𝑆∗ in 𝑆𝑆𝑒𝑒𝑞𝑞∗

• Either 𝑆𝑆𝑗𝑗 = 𝑆𝑆∗ or 𝑆𝑆∗ occurs before 𝑆𝑆𝑗𝑗 in 𝑆𝑆𝑒𝑒𝑞𝑞∗

Global State Properties

33

The recorded state is reachable from the starting state.

The termination state is reachable from the recorded state.

Theorem

34

Stable
• If it becomes true for state 𝑆𝑆

• True for all states 𝑆𝑆𝑆 reachable from 𝑆𝑆
• Otherwise it is not stable (so “if and only if”)

Examples:
• Deadlock
• Termination

Global State: Stable Properties

35

Evaluate a property without knowing the system state

Stability helps us reason about the system:

𝑆𝑆∗ is reachable from 𝑆𝑆𝑖𝑖
𝑆𝑆𝑗𝑗 is reachable from 𝑆𝑆∗

If we know 𝑆𝑆∗ is stable then we know 𝑆𝑆𝑗𝑗 is stable
If we know 𝑆𝑆∗ is not stable then we know 𝑆𝑆𝑖𝑖 is not stable

Challenge

36

Transient errors:
• Buffer overflow
• Load spikes
• Race conditions (non-determinism)

State 𝑆𝑆∗ may not have happened

Do distributed snapshots help here?

Unstable Properties

37

If 𝑦𝑦 is a stable property, then if 𝑦𝑦(𝑆𝑆∗) is true it is definitely true, regardless of the path taken

If 𝑦𝑦 is not a stable property, then if 𝑦𝑦(𝑆𝑆∗) is true we don’t know (it could be true).

Not perfect
• Perhaps we can do better with other techniques

Definite versus possible state

38

Lesson Summary

39

Global state detection is challenging in a distributed system

Distributed snapshot algorithm can describe a possible state
• Isomorphic
• Identifies stable properties

We can (and will) build on this.

What did we discuss?

40

Questions?

	CPSC 416 Distributed Systems
	Logistics
	Teaching Assistants
	Office Hours
	Assessment
	Reading
	Today’s Failure
	Southwest Airlines Meltdown
	Southwest Airlines Meltdown (Optional Reading)
	Lesson Goals
	Distributed Systems
	Global State Model
	Run
	Distributed System State
	Distributed System State
	Distributed System Snapshot
	Recording Events
	Distributed Systems State Challenges
	Non-determinism in Distributed Systems
	Formalize our model
	Consistent Cut Algorithm
	Process snapshots
	Initiate snapshot
	Capture second snapshot
	Complete snapshot
	Snapshot Algorithm (Generalized)
	Algorithm Assumptions
	Algorithm: Process Perspective
	Chandy-Lamport Algorithm
	Lattice Theory
	Run Permutations
	Global State Properties
	Theorem
	Global State: Stable Properties
	Challenge
	Unstable Properties
	Definite versus possible state
	Lesson Summary
	What did we discuss?
	Questions?
	Click to edit Master title style

