CPSC 416 Distributed
Systems

Winter 2023 Term 1 (November 23, 2023)

Tony Mason (fsgeek@cs.ubc.ca), Lecturer

UB

0

€

Teaching Assistants

Andy Hsu (andy.hsu@alumni.ubc.ca)

Hamid Ramezanikebrya (hamid@ece.ubc.ca)

Jonas Tai (jonastai@student.ubc.ca)

Cathy Yang (kaigiany@student.ubc.ca)

UB

0

€

mailto:andy.hsu@alumni.ubc.ca
mailto:hamid@ece.ubc.ca
mailto:jonastai@student.ubc.ca
mailto:kaiqiany@student.ubc.ca

Office Hours

Remember: Use Piazza for all official course-related communications
Not on Piazza? Not official.
Canvas “comments/messages” are not monitored

offce Hours: LA L S

Tony Monday 14:00-15:00 Discord
Wednesday 16:00-17:00
Andy Thursday 19:00-20:30 Discord
Hamid Friday 16:30-18:00 Kaiser 4075
Jonas Thursday 13:00-14:00 Online (see
Piazza)

Cathy Friday 09:00-10:30 X237

UB

0

€

Assessment

This week
* No (more) deadlines

Next week
» Capstone Status Report (Tue @ 17:00)
» Design Recipe Self-Assessment (Thu @ 17:00)

Note:
* You are strongly encouraged to collaborate with others on this
* You should use tools at your disposal to answer these questions
* Do not forget to submit it.

Microsoft Azure

Date: September 16, 2023
Time: 07:24 UTC =L
Source: https://azure.status.microsoft/en-us/status/history/

0

€

US East Region scale units in a single availability zone lost power, rebooted.
A subset failed to come back online after reboot.

Impact:
* “[S]ome customers using proxy mode connection may have experienced impact,
due to one connectivity gateway not being configured with zone-resilience.”

Microsoft Azure (September 16, 2023)

Impact:

« “SQL Databases with ‘auto-failover groups’ enabled were failed out of the region, JBC

0

incurring approximately eight hours of downtime prior to the failover completing.
« “SQL Databases with ‘active geo-replication’ were able to self-initiate a failover to
an alternative region manually to restore availability.”

Root Cause: “this incident was initially triggered by a UPS rectifier failure on a Primary
UPS.”

Microsoft Azure September 16, 2023

Secondary Failure(s):

The UPS was connected to three Static Transfer Switches (STS) — which are designed to transfer power loads between independent and redundant power sources, without interruption. The
STS is designed to remain on the primary source whenever possible, and to transfer back to it when stable power is available again. When the UPS rectifier failed, the STS successfully
transferred to the redundant UPS — but then the primary UPS recovered temporarily, albeit in a degraded state. In this degraded state, the primary UPS is unable to provide stable power
for the full load. So, after a 5-second retransfer delay, when the STS transferred from the redundant UPS back to the primary UPS, the primary UPS failed completely.

While the STS should then have transferred power back to the redundant UPS, the STS has logic designed to stagger these power transfers when there are multiple transmissions (to and
from primary and redundant UPS) happening in a short pericd of time. This logic prevented the STS from transferring back to the redundant power, after the primary UPS failed
completely, which ultimately caused a power loss to a subset of the scale units within the datacenter — at 07:24 UTC, for 1.9 seconds. This scenario of load transfers, to and from degraded
UPS, over a short period of time, was not accounted for in the design. After 1.9 seconds, the load moved to the redundant source automatically for a final time. Our onsite datacenter team

validated that stable power was feeding all racks immediately after the event, and verified that all devices were powered on.

A previously discovered bug that applied to some of our BIOS software led to several hosts not retrying to connect to a PXE server, and remaining in a stuck state. Although this was a
known issue, the initial symptoms led us to believe that there was a potential issue with the network and/or our PXE servers — troubleshooting these symptoms led to significant delays in
correlating to the known BIOS issue. While multiple teams were engaged to help troubleshoot these issues, our attempts at force rebooting multiple nodes were not successful. As such, a
significant amount of time was spent exploring additional mitigation options. Unbeknownst to our on call engineering team, these bulk reboot attempts were blocked by an internal
approval process, which has been implemented as a safety measure to restrict the number of nodes that are allowed to be forced rebooted at one time. Once we understood all of the
factors inhibiting mitigation, at around 16:30 UTC we proceeded to reboot the relevant nodes within the safety thresholds, which mitigated the BIOS issue successfully.

e
|

Microsoft Azure September 16, 2023

Monitoring Deficiency:

Throughout this incident, we did not have adequate alerting in place, and could not determine which specific VMs were impacted, because our assessment tooling relies on a heartbeat -\
emitted from the compute nodes, which were stuck during the boot up process. Unfortunately, the time taken to understand the nature of this incident meant that communications were

delayed. For customers using Service Bus and Event Hubs, this was multiple hours. For customers using Virtual Machines, this was multiple days. As such, we are investigating several
communications related repairs, including why automated communications were not able to inform customers with impacted VMs in near real time, as expected.

Post Incident Review Video: https://www.youtube.com/watch?v=VUOXttRVyOq

10

https://www.youtube.com/watch?v=VU0XttRVyOg

Lesson Goals

Data Center Services

Trends and Services

High-speed RDMA and programmable networks
Resource heterogeneity

Resource disaggregation

Resource management and orchestration

Cc
o
0

i

12

Trends

Moore’s Law:
* Economy of scale

+ Performance and scale with commodity components

Specialization/heterogeneity
+ GPUs, TPUs, etc.
* New memory
* New Storage classes

Disaggregation
* Independently scaled tiers
of different resources

10,000,000

1,000,000

100,000

10,000

1,000

1980

Moore's Law (1975 version] « Transiistor Density

1950 2000 mo 2020

Moore, Gordon E. “No exponential is forever: but ‘Forever’ can be

delayed!” Solid-State Circuits CGonference, 200.

13

New Technologies

Limitation of (x86+DRAM+Ethernet) + scale and requirements of emerging workloads:

Mellanox @
TECHWOLOBIES

NVIDIA.

High-speed interconnects,
ﬂ shared memory

across nodes

Mellanox (intel')

Programmable interconnects
= move common tasks,
Paxos?, in network

Aicron (il‘ltel)
Persistent memories = i
memory persistent store,

redesign fault tolerance

Google <

NVIDIA.

Specialized accelerators =
resource management, load
balancing, affinity, ...

“ MNetwork-
ached-X

. 4
docker kubernetes

From VMs to and
uservices

14

Remote Direct Memory Access (RDMA)

Remote DMA

Bypass CPU
« Data access/communications via interconnect support (“network”)

Benefits (versus commodity Ethernet):
* Higher Bandwidth
* Lower latency

Tradeoffs:
e Costs

0

UB

€

15

RDMA

Original idea: 1990s research
Virtual Interconnect Architecture (VIA): 2000s

Mellanox: Infiniband
» Today: approx. 50% of top 500 machines, many data centers

Remote DMA over Converged Ethernet (RoCE)

Internet Wide Area RDMA Protocol (iWARP)

UB

0

€

16

https://en.wikipedia.org/wiki/InfiniBand
https://en.wikipedia.org/wiki/RDMA_over_Converged_Ethernet
https://en.wikipedia.org/wiki/IWARP

Two-sided RDMA

rdma_read/write

17

One-sided RDMA

rdma_read/write

Directjcache injection

18

RDMA Specialized Remote Procedure Call (RPC)

Node 1 One-sided (SEND) Hode 2

ol

1
I"!

Two-sided (SEND) RECV

CPU
One-sided: Two-sided:
Low CPU utilization, multiple Single RTT, simple integration
RTTs in existing stack

Redesign to match new API

Figure adapted from: htips#www.usenix.org/sites/defaulifiles/conference/protected-files/osdi16_slides_kalia. pdf

19

https://usenix.org/sites/default/files/conference/protected-files/osdi16_slides_kalia.pdf

RPC with RDMA Options

Leverage RDMA features:

& Connection vs.
connection-less protocol

o Shared Receive
Queues

@ Datagram
communication for small
RPCs

o
—
=
S
@
O
o
£
Q
—
m
=
o
@
o=

C
W
0

O READs
{3 FaSST RPCs

20 40 60 80 100
Number of nodes (N)

Figure from: FaSST Paper, O5DI'16
20

https://www.usenix.org/system/files/conference/osdi16/osdi16-kalia.pdf

Persistent Memory

|

[

|

[PCle SSD

|

|

|

|
Interface | block 1/0
Durability : yes
Latency | 30us
Bandwidth : -
Capacity : Terabytes

PCM FeRAM

Byte-addressable Persistent
Memory (PMEM)

byte
yes
~100ns -- 300ns
1 1
Ex to Zx
Terabytes

Main Memory
(DRAM)

byte

no
60ns

1x

Gigabytes

21

RPC + Persistent Memory

Persistent data operations require
flush to persistent memory

Must complete before client is
Acknowledged

Removes advantage of RDMA
over send/receive RPC

Cl

ient Server
NIC Lag MC
R == || |
B *"_'_'-"::}
(c) RPC
]
(d) RDMA write + flush
(oM wre fush |
_____ “"_'_'_-L::}

Figure 2 from SOCC’'20
paper:

hitp:/fanujkalia.com/doc/socc?

O/kalia.pdf

MNetwork and PCle operations
involved in writing to remote

NVMM with different methods.

Red arrows from the client to
the server's NIC are network
packets. The dotted arrows
are NIC-generated RDMA
acknowledgments. Straight
blue arrows between the
server's NIC and its cache
(L3) or memory controller
(MC) are PCle DMA or MMIO
writes; the curved ones are
DMA reads. The server's CPU
(not shown) is in—volved in
persisting RPC requests.

UBC

e

ﬂiulbih

22

http://anujkalia.com/doc/socc20/kalia.pdf

Disaggregation

Server configurations
» Different memory components
» Different compute components
« Storage
« Etc.

Choose specific amounts based on workload
* Workloads evolve

Monolithic server configurations
» Inflexible, cannot elastically scale
* Imbalances lead to inefficiency

Monolithic servers with fixed
configuration of CPU, memory, ===
storage, devices, PCle slots, ... W

Figure adapted from the LegoOS presentation:
hitps:www.usenix.org/sites/defaulifiles/conference/protected-
files/osdil8_siides_shan.pdf

23

https://www.usenix.org/system/files/osdi18-shan.pdf

Disaggregation

Resource Disaggregation
* Pools of different resource types
* Network attached
* Independently scaled

Motivation
« Fast Networks
* Integrate compute with devices
* Smart NICs
* In-memory compute

Figure adapted from the LegoQS preseniation:
hitps:fwww.usenix.org/sites/defaultfiles/conference/protected-
files/osdi18 slides shan.pdf

24

Separating Processor and Memory

Processor

CPU n CPU ﬂ

Last-l evel Cache BBLLE:

MMU

DRAM

E

Figures adapted from the LegoQS Presentation at QSDI20: hftps Agithub.com/WukLab/LegoOS

25

https://www.usenix.org/sites/default/files/conference/protected-files/osdi18_slides_shan.pdf

Separate Processor and Memory

0

Processor uB

CPU n CPU n
Last-Level Cache JBLE:

€

Disaggregating DRAM

Figures adapted from the LegoOS Presentation at OSDI'20: hitps//github.com/WukLab/LegoOS
26

https://www.usenix.org/sites/default/files/conference/protected-files/osdi18_slides_shan.pdf

Separate Processor and Memory

UB

0

Processor

CPUE CPUE

€

Separate and{move
hardware units

to memory component

Figures adapted from the LeqoOS Presentation at OSDI'20: hftpsigithub.com/WukLab/LegoOS o7

https://www.usenix.org/sites/default/files/conference/protected-files/osdi18_slides_shan.pdf

Separate Processor and Memory

Virtual Memory System UB

Processor W

CPU n CPU n
Last-Level Cache

Il
Network
Il B

Figures adapted from the LegoOS Presentation at OSDI20: hitps.//github.com/WukLab/LegoOS

28

https://www.usenix.org/sites/default/files/conference/protected-files/osdi18_slides_shan.pdf

Separate Processor and Memory

0

Processor UB

CPU n CPU n

€

Separate and move
virtual memory system
to memory component

LB MMU Virtual Memory System

DRAM PT

Memory

Figures adapted from the LegoO5S Presentation at OSDI20: hftpsgithub.com/WukLab/LegoOS5
29

https://www.usenix.org/sites/default/files/conference/protected-files/osdi18_slides_shan.pdf

Separate Processor and Memory

Virtual Virtual
Address Address UB

Fronggsor Processor components only see virtual
CPU\ﬂ CPu'ﬂ memory addresses

All levels of cache are virtual cache

0

€

Virtual
Address

o
Virtual g

=
Addressj 0 ko 0

= 1

T8 MMU | Virtual Memory System Memory components manage virtual

DRAM PT and physical memory
Memory

Figures adapted from the LeqoO5S Presentation af OSDI'20: hitps //github.com/WukLab/ egoO5 30

https://www.usenix.org/sites/default/files/conference/protected-files/osdi18_slides_shan.pdf

Disaggregation Challenges

Network is slower than local memory bus
« Bandwidth: 25-50% capacity
* Improving quickly (800Gb/s Ethernet now exists)

« Latency: 12x longer
* Improving slowly (“speed of light”)

UB

0

€

31

Use Extended Cache in CPU

Processor

CPU n CPU n

Last-Level Cache

Il .
Network
Il .

TLB MMU Virtual Memory System

DRAM

PT

Memory

Figures adapted from the LegoOS Presentation at OSDI'20: hitps:/igithub.com/WukLab/LegoOS

32

Add small DRAM/HBM with CPU

Processor
UBC
CPU n CPU n o
Extend Cache W
Last-Level Cache
+ Software/Hardware co-managed

* Inclusive DRAM ExCache

* Virtual memory cache

Il B
Network
Il B

TLB MMU Virtual Memory System

DRAM PT

Memory

33
Figures adapted from the LegoOS Presentation at QSDI'20: hfips /github.com/WukLab/LegoOS3

https://www.usenix.org/sites/default/files/conference/protected-files/osdi18_slides_shan.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/osdi18_slides_shan.pdf

Datacenter Scale

Thousands of components
General purpose server components

Specialized configurations for
specific workloads

Hyperscale sizes (order of magnitude
larger!)

https:4blog.google/around-the-globe/google-asia/growing-our-data-center-in-singapore

34

https://blog.google/around-the-globe/google-asia/growing-our-data-center-in-singapore/

Management Challenges

Long running services
Application Batch jobs
Production vs. non-production

Multi-tenancy

Differ in resource requirements:

Processes/tasks . 5 T
ﬂ':t?irc: e A # Compute-intensive
L Lﬂte;}cy-gensiﬁve #® Demand accelerators
® Throughput-intensive & Data-intensive ;
@ Data access speed vs. data capacity

Service-level Agreement (SLA)
Service-level Objective (SLO)

35

Managing Resources

Omega (Eurosys 2013)

Borqg (Eurosys 2015)

Kubernetes

36

https://cs.brown.edu/%7Emalte/pub/papers/2013-eurosys-omega.pdf
https://research.google/pubs/pub43438/
https://kubernetes.io/

Borg Terminology

Cell: a collection of machines
* Unit of management

Machines in a cell are part of one cluster
* High-performance “network fabric’

Cluster: set of machines in a single
datacenter building

Site: a set of datacenter buildings

Building 1

Building 2

Cell 1

37

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/43438.pdf

Application Job & Task States

Application Job = Thousands of Tasks |submit+) reject UBC
accept w

A J
) update

schedule

fail, Kill,

ost update

submit finish, fail, kill, lost

Flgure 2: The state diagram
for both jobs and tasks.
Users can trigger submit, kill,
and update transitions.

Adapted from: hitps:/#storage googleapis.com/pub-tools-public-publication-data/pdi/43438 paf

38

Borg Architecture

Flgure 1: The high-level
architecture of Borg. Only a
tiny fraction of the thousands
of worker nodes are shown.

Figure adapted from: hiips:/res._infoq.com/news/2015/04/google-borg/en/resources/borg_png

Cc
0

j

https://res.infoq.com/news/2015/04/google-borg/en/resources/borg.png

Borg Architecture

Figure adapted from:
htips:ires.infog.com/news/201504/google-
borg/fen/resources/borg.png

Borgmaster is the brain of the Borg system

One Borgmaster per cell uBc
Handles requests to execute/check job status W

Cell state maintained in memory
Maintains pending queue
» If job exceeds quota, not admitted
» Quota assignment is policy, not Borg
Assigns tasks to machines
Monitors all machine state within the cell

40

Borg Architecture

Task Scheduler:
» Scans pending queue in priority order

» Checks feasibility, finds set of machines
where tasks can run

* Finds best fit

* Forwards assignment to Borgmaster

Borgmaster:
* May pre-empt lower priority tasks

* Pre-empted tasks are returned to

pending queue

* Production priority tasks not pre- Figure adapted from:
hitps:/res_infog.com/news/2015/04/google-
empted. borg/eniresources/borg.png

41

Borg Architecture

Borglet: local Borg agent on machine

« Start/stop tasks ,:Q_:B:g
» Restart tasks after failure W

* Manages local resources

* Reports machine state to
Borgmaster

Borgmaster polls Borglet

 Machine info

+ Updated cell state
* No response = machine marked

Figure adapted from: d
https:/ires.infog.com/news/2015/04/google- own
borg/en/resources/borg.png

42

Borgmaster Reliability

Borgmaster has 5 replicas

Chubby lock acquire by leader; other replicas use lock collision info to find leader.
Only leader changes cell state.

Cell leader is also Paxos leader for replicated data store

Each replica contains cell state (Paxos-based key-value store)

Failover time is approximately 10 seconds.

UB

0

€

43

Borgmaster Availability

Reschedule pre-empted tasks

Reduces correlated failures
« Spreads job tasks across failure domains
» Separate machines
» Separate racks
» Separate power domains

Limits task disruption rates

Avoids repating task/machine pairings that cause task/machine crashes

« “Learning”

UB

0

€

44

Borg Scalability

Decouples task assignment from scheduling
» Asynchronous update/read from pending queue
* Permits different schedulers

Efficient communications
» Separate threads for RPCs and Borglet communications
* Use link shards to summarize information from Borglets

Optimize scoring of machine/task pairs
Efficient resource utilization

» Spread job tasks across machines
« Allow mixing production/non-production workloads

UB

0

€

45

Scheduler Optimizations

Score Caching:
UB

0

» Scores for task assignment cached until machine/task priorities change

€

« Small changes in resource quantities on machines are ignored

Equivalence classes:
* Group tasks with identical requirements
« Score computed once per equivalence class

Relaxed randomization:
« Scheduler examines machines in random order to finds enough to score
* Reduces amount of scoring/cache-invalidations when tasks enter/leave

» Speeds up assignment of tasks to machines
46

Performance Isolation

Tasks run in containers
Borglets manipulate container properties
Borg tasks have an application class
« Latency sensitive application classes: high priority
« Batch application classes: low priority
Compressible resources
+ CPU cycles, rate based disk 1/0O bandwidth
« May be reclaimed with lower QoS, but continues running
Non-compressible resources
* Memory, disk space
* Reclaim requires halting task

UB

0

€

47

Lesson Review

Data Center Services

Trends and Services

High-speed RDMA and programmable networks
Resource heterogeneity

Resource disaggregation

Resource management and orchestration

Cc
o
0

i

49

Questions?

50

THE UNIVERSITY OF BRITISH COLUMBIA

	CPSC 416 Distributed Systems
	Logistics
	Teaching Assistants
	Office Hours
	Assessment
	Today’s Failure
	Microsoft Azure
	Microsoft Azure (September 16, 2023)
	Microsoft Azure September 16, 2023
	Microsoft Azure September 16, 2023
	Lesson Goals
	Data Center Services
	Trends
	New Technologies
	Remote Direct Memory Access (RDMA)
	RDMA
	Two-sided RDMA
	One-sided RDMA
	RDMA Specialized Remote Procedure Call (RPC)
	RPC with RDMA Options
	Persistent Memory
	RPC + Persistent Memory
	Disaggregation
	Disaggregation
	Separating Processor and Memory
	Separate Processor and Memory
	Separate Processor and Memory
	Separate Processor and Memory
	Separate Processor and Memory
	Separate Processor and Memory
	Disaggregation Challenges
	Use Extended Cache in CPU
	Slide Number 33
	Datacenter Scale
	Management Challenges
	Managing Resources
	Borg Terminology
	Application Job & Task States
	Borg Architecture
	Borg Architecture
	Borg Architecture
	Borg Architecture
	Borgmaster Reliability
	Borgmaster Availability
	Borg Scalability
	Scheduler Optimizations
	Performance Isolation
	Lesson Review
	Data Center Services
	Questions?
	Click to edit Master title style

