CPSC 416 Distributed Systems

Winter 2022 Term 2 (March 23, 2023)

Tony Mason (fsgeek@cs.ubc.ca), Lecturer

Teaching Assistants

Andy Hsu (andy.hsu@alumni.ubc.ca)

Hamid Ramezanikebrya (hamid@ece.ubc.ca)

Jonas Tai (jonastai@student.ubc.ca)

Cathy Yang (kaiqiany@student.ubc.ca)

Office Hours

Remember: Use Piazza for all official course-related communications

- Not on Piazza? Not official.
- Canvas "comments/messages" are not monitored

Office Hours:	Who	When	Where
	Tony	Monday 14:00-15:00 Wednesday 16:00-17:00	Discord
	Andy	Thursday 19:00-20:30	Discord
	Hamid	Friday 16:30-18:00	Kaiser 4075
	Jonas	Thursday 13:00-14:00	Online (see Piazza)
	Cathy	Friday 09:00-10:30	X237

Self-Assessment

This week

• DP3 Implementation Report (Thu @ 23:59)

Next week

- Capstone Status Report (Tue @ 17:00)
- DP3: Peer Review Implementation Reports (Thu @ 17:00)
- Note: no self-assessment activity

Note:

- You are strongly encouraged to collaborate with others on this
- You should use tools at your disposal to answer these questions
- Do not forget to submit it.

Today's Failure

-

Software Upgrade Failures in Distributed Systems

This is not about just a *single* failure, but a common class of failures.

Upgrade is one of the most disruptive yet unavoidable maintenance tasks that undermine the availability of distributed systems. Any failure during an upgrade is catastrophic, as it further extends the service disruption caused by the upgrade. The increasing adoption of continuous deployment further increases the frequency and burden of the upgrade task. In practice, upgrade failures have caused many of today's high-profile cloud outages. Unfortunately, there has been little understanding of their characteristics.

Understanding and Detecting Software Upgrade Failures in Distributed Systems

Presented at SOSP 2021

Cassandra	HBase	HDFS	Kafka	MapReduce	Mesos	Yarn	ZooKeeper
44	13	38	7	1	8	8	4

Table 1. Numbers of upgrade failures we analyzed.

By analyzing upgrade failures of 123 failures, the authors created:

- Insight into severity, root causes, exposing conditions, and fix strategies
- DUPChecker: a testing framework for upgrade class failures
 - It identified 20 previously unknown upgrade failure causes in 4 distributed systems
 Fon To C? Cause 15794 3.11.4 4.0 ✓ Data-syntax Incomp.

	Failure		From	To	C.?	Cause
15794		3.11.4	4.0	\checkmark	Data-syntax Incomp.	
		16258	3.11.6	4.0		Data-syntax Incomp.
		16301	3.11.9	4.0	\checkmark	Code Incompatibility
		16292	3.0.0	3.2.0		Data-syntax Incomp.
	dra	16257	2.1.0	2.2.0		Data-syntax Incomp.
	san	16264	2.0.0	2.1.0		Data-semantics Incomp.
	Cassandra	16265	2.0.0	2.1.0		Data-syntax Incomp.
		16266	2.0.0	2.1.0	\checkmark	Data-syntax Incomp.
		16267	1.1.0	1.2.0	\checkmark	Data-semantics Incomp.
		16268	1.1.0	1.2.0		Data-syntax Incomp.
		16269	1.1.0	1.2.0		Data-syntax Incomp.
		25239	2.3.3	3.0		Broken Upgrade Op.
		24430	2.2	2.4		Broken Dependency
	HBase	24556	2.2	2.3	\checkmark	Broken Dependency
	Ĥ	25238	2.2.0	2.3.3	\checkmark	Data-syntax Incomp.
	<u> </u>	25259	2.1.1	2.2.0		Broken Upgrade Op.
		25260	2.0.6	2.1.1		Broken Upgrade Op.
	Kafka10041		1.1	2.4	\checkmark	Broken Dependency
	ve	24440	2.3.7	3.0.0		Data Syntax Incomp.
	ΗË	24493	2.1.1	2.3.7		Upgrade Operation
-	11.	-				

 Table 5. DUPTester's result on real-world systems. Failure number is the report ticket number on JIRA. C.?: whether the bug is already confirmed by developers.

Lesson Goals

-

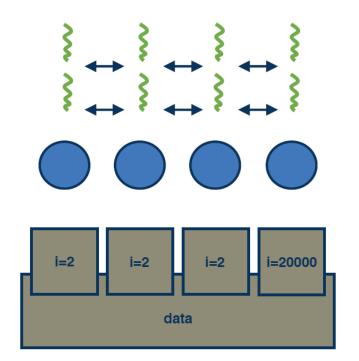
Distributed Data Analytics

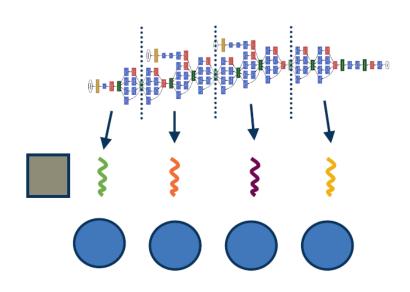
MapReduce

Spark (and RDDs)

Data Parallel (Divide & Conquer):

- Divide Data across nodes
- Load balancing, decomposition
- Messaging for data dependencies
- Application usage



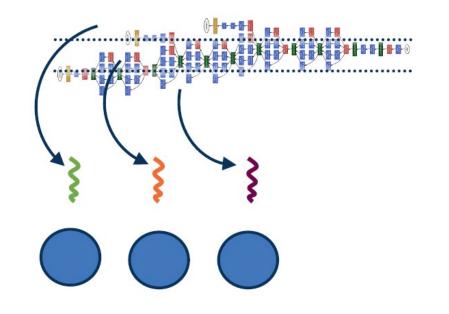


Pipelining

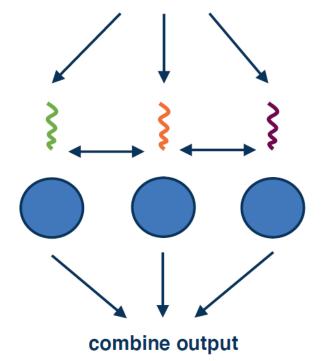
- Divide work into smaller tasks
 - Small number of tasks per node
 - Faster than generality
- Data streamed in chunks through task pipeline
- Increases throughput

Model Parallelism

- Divide state across nodes
- Less processing per node
- Input passed to all nodes
- Output combined from all nodes
- Must handle dependencies



distribute input



Model Parallelism

- Divide state across nodes
- Less processing per node
- UBC
- Input passed to all nodes
- Output combined from all nodes
- Must handle dependencies

MapReduce

MapReduce: Simplified Data Processing on Large Clusters, J. Dean, OSDI 2004.

- Hadoop MapReduce
- AWS infrastructure

16

MapReduce

Input:

• Set of key-value pair records

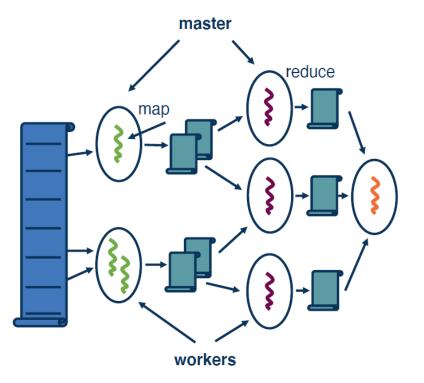
Map function

- Input: unique key-value pair
- Output: a new key-value pair

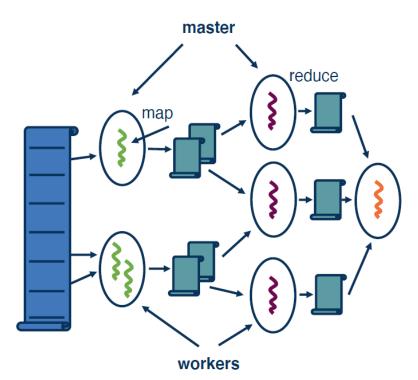
Reduce function:

- Input: output from map function
- Output: final result

Master: orchestrates workers, I/O, failure management



MapReduce



Wordcount example:

Input: Collection of files

Map function:

- Input: File, key=filename, content=value
- Output: file with key=word, value=list of counts

Reduce function:

- Input: file with key=word, value=list of counts
- Output: list of words with total counts

Other examples:

• URL access frequency, page rank, inverted word index

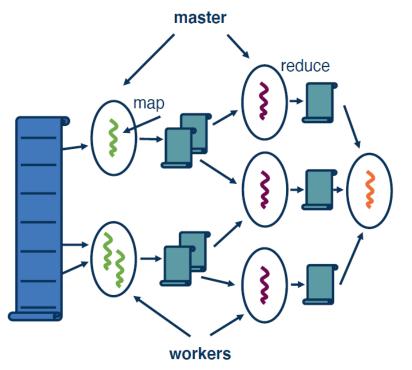
18

MapReduce

Combining Techniques:

- Data parallel: chunks to mappers
- Pipelining: mapper to reducer
- Model parallelism: reducers process parts of key space, combine

Dataflow model means flow of data determines execution



Map Reduce: Design Decisions

Master data structures:

Tracking

Locality:

• Scheduling, placement of intermediate data

Task granularity:

- Finer granularity: more flexibility, management operation execution time
- Coarse granularity: lower management overhead

Fault tolerance:

- Master: standby replication
- Worker: detect failures or stragglers and re-execute

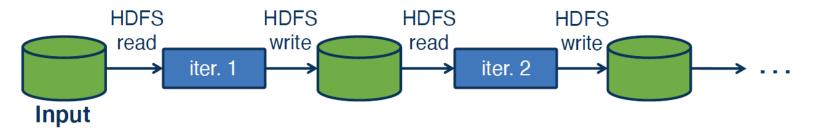
Failure semantics:

Importance of Consistency and complete results

Backup tasks:

Inevitable failures: speculative task backup

Map Reduce: Limitations



UBC

Failure inevitable: cannot re-execute entire operation

Fault-tolerant mechanism: requires intermediate data availability

- Serialiation to/from persistent storage
- Remote access and data movement

Data amplification:

- Intermediate data may be much larger than input
- Executions are iterative
- Storage level replication

System scale: cannot assume best-in-class storage devices

Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing

Faster analytics (10x) versus Hadoop

- Workloads: graph, streaming, SQL, Machine Learning, etc.
- Languages: Java, Python, Scala, etc.
- Platforms: AWS, Kubernetes, etc.

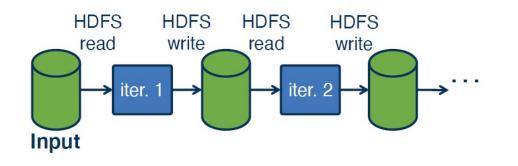
Apache Spark

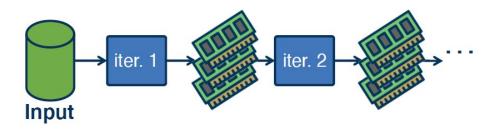
Spark: Goals

Allow in-memory data sharing

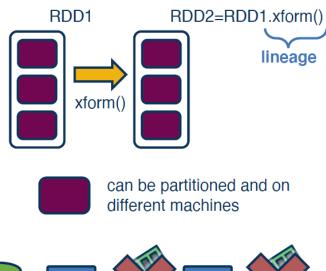
- Fast DRAM versus slow hard disk
- No serialization cost

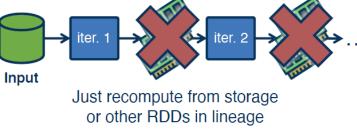
Fault-tolerant





Resilient Distributed Datasets: Introduction





Immutable partitioned record collection

Created using transformations

- Operations on data in stable storage
- Map/join/filter on other RDDs

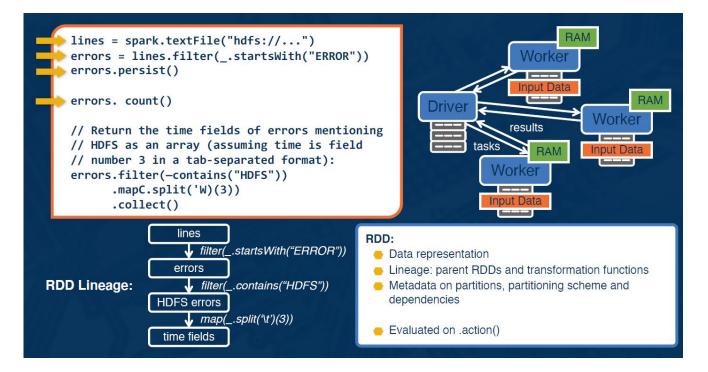
Used via actions (count, collect, save) RDDs map back to source

Compute partitions from data in stable storage

Users control persistence and partitioning

Resilient Distributed Datasets: Example

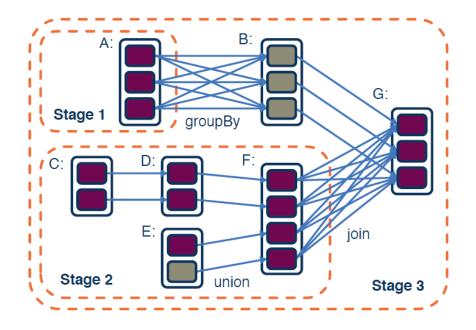
Console log mining example



Resilient Distributed Datasets: Transformations & Actions

Trans	sformations	$\begin{array}{rcl} map(f:T \Rightarrow U) & : & RDD[T] \Rightarrow RDD[U] \\ filter(f:T \Rightarrow Bool) & : & RDD[T] \Rightarrow RDD[T] \\ flatMap(f:T \Rightarrow Seq[U]) & : & RDD[T] \Rightarrow RDD[U] \\ sample(fraction:Float) & : & RDD[T] \Rightarrow RDD[T] (Deterministic sampling) \\ groupByKey() & : & RDD[(K, V)] \Rightarrow RDD[(K, Seq[V])] \\ reduceByKey(f:(V, V) \Rightarrow V) & : & RDD[(K, V)] \Rightarrow RDD[(K, V)] \\ union() & : & (RDD[T], RDD[T]) \Rightarrow RDD[T] \end{array}$	Narrow Dependencies:	Wide Dependencies:
		$ \begin{array}{ll} join() & : & (RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (V, W))] \\ cogroup() & : & (RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (Seq[V], Seq[W]))] \\ crossProduct() & : & (RDD[T], RDD[U]) \Rightarrow RDD[(T, U)] \\ mapValues(f : V \Rightarrow W) & : & RDD[(K, V)] \Rightarrow RDD[(K, W)] (Preserves partitioning) \\ sort(c : Comparator[K]) & : & RDD[(K, V)] \Rightarrow RDD[(K, V)] \\ partitionBy(p : Partitioner[K]) & : & RDD[(K, V)] \Rightarrow RDD[(K, V)] \\ \end{array} $	map, filter	groupByKey
A	Actions	$\begin{array}{lll} count() &: & RDD[T] \Rightarrow Long \\ collect() &: & RDD[T] \Rightarrow Seq[T] \\ reduce(f:(T,T) \Rightarrow T) &: & RDD[T] \Rightarrow T \\ lookup(k:K) &: & RDD[(K, V)] \Rightarrow Seq[V] (On hash/range partitioned RDDs) \\ save(path : String) &: & Outputs RDD to a storage system, e.g., HDFS \end{array}$	join with inputs co-partitioned	join with inputs not
Ta	Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.		union	co-partitioned

Resilient Distributed Datasets: Scheduling Action Execution



Program defines dependencies

Actions:

- Directed acyclic graph (DAG)
- Minimize dependencies
- Optimize parallelism
- Limit I/O contention

Tasks assigned based on data locality

Spark: Goals

Data in memory?

- Distributed shared memory like ٠ runtime
 - Log updates •
 - Persist lineage •

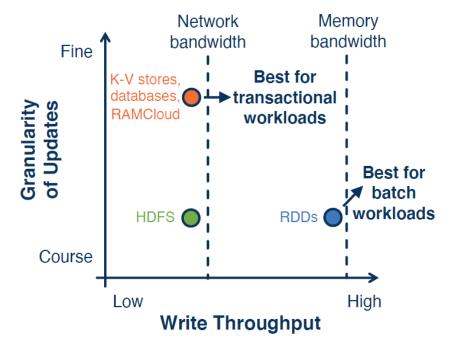
less data to persist in execution critical path

read data as low as once, less slow storage I/O

Log coarse grained operations applied to all items in RDD elements

more control on locality

Spark: Goals



Data in memory?

- Distributed shared memory like runtime
 - Log updates
 - Persist lineage

Log coarse grained operations applied to all items in RDD elements

Spark: Evaluation

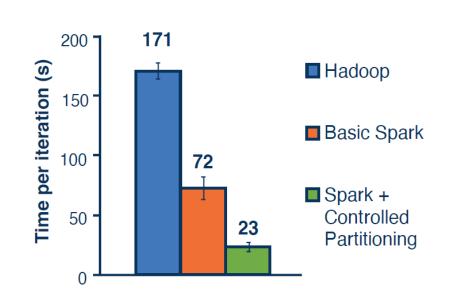
Up to 20x better than Hadoop

- Iterative
- Machine learning
- Graph applications

Analytics report generation 40x

Rapid failure recovery

1TB dataset queries with 5-7 second latencies



Lesson Review

-

Distributed Data Analytics

Systems for scalable data processing

MapReduce

Spark

Questions?

