
Winter 2022 Term 2 (March 23, 2023)

Tony Mason (fsgeek@cs.ubc.ca), Lecturer
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Andy Hsu (andy.hsu@alumni.ubc.ca)

Hamid Ramezanikebrya (hamid@ece.ubc.ca)

Jonas Tai (jonastai@student.ubc.ca)

Cathy Yang (kaiqiany@student.ubc.ca) 
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Remember: Use Piazza for all official course-related communications
• Not on Piazza?  Not official.
• Canvas “comments/messages” are not monitored

Office Hours:

Office Hours

Who When Where
Tony Monday 14:00-15:00

Wednesday 16:00-17:00
Discord

Andy Thursday 19:00-20:30 Discord
Hamid Friday 16:30-18:00 Kaiser 4075
Jonas Thursday 13:00-14:00 Online (see 

Piazza)
Cathy Friday 09:00-10:30 X237
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This week
• DP3 Implementation Report (Thu @ 23:59)

Next week
• Capstone Status Report (Tue @ 17:00)
• DP3: Peer Review Implementation Reports (Thu @ 17:00)
• Note: no self-assessment activity

Note:
• You are strongly encouraged to collaborate with others on this
• You should use tools at your disposal to answer these questions
• Do not forget to submit it.

Self-Assessment
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Today’s Failure
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This is not about just a single failure, but a common class of failures.

Software Upgrade Failures in Distributed Systems
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Presented at SOSP 2021

By analyzing upgrade failures of 123 failures, the authors created:
• Insight into severity, root causes, exposing conditions, and fix strategies
• DUPChecker: a testing framework for upgrade class failures

• It identified 20 previously unknown upgrade failure causes in 4 distributed 
systems

Understanding and Detecting Software Upgrade Failures in 
Distributed Systems

https://dl.acm.org/doi/10.1145/3477132.3483577
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Lesson Goals
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MapReduce

Spark (and RDDs)

Distributed Data Analytics
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Data Parallel (Divide & Conquer):
• Divide Data across nodes
• Load balancing, decomposition
• Messaging for data dependencies
• Application usage

Common Techniques
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Pipelining
• Divide work into smaller tasks

• Small number of tasks per 
node

• Faster than generality
• Data streamed in chunks through 

task pipeline
• Increases throughput

Common Techniques
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Model Parallelism
• Divide state across nodes
• Less processing per node
• Input passed to all nodes
• Output combined from all 

nodes
• Must handle dependencies

Common Techniques
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Model Parallelism
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Common Techniques
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MapReduce: Simplified Data Processing on Large Clusters, J. Dean, OSDI 2004.

• Hadoop MapReduce
• AWS infrastructure

MapReduce

http://nil.csail.mit.edu/6.824/2018/papers/mapreduce.pdf
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Input: 
• Set of key-value pair records

Map function
• Input: unique key-value pair
• Output: a new key-value pair

Reduce function:
• Input: output from map function
• Output: final result

Master: orchestrates workers, I/O, failure 
management

MapReduce
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Wordcount example:
• Input: Collection of files

Map function:
• Input: File, key=filename, content=value
• Output: file with key=word, value=list of 

counts
Reduce function:

• Input: file with key=word, value=list of 
counts

• Output: list of words with total counts
Other examples:

• URL access frequency, page rank, 
inverted word index 

MapReduce
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Combining Techniques:
• Data parallel: chunks to mappers
• Pipelining: mapper to reducer
• Model parallelism: reducers process 

parts of key space, combine

Dataflow model means flow of data determines 
execution

MapReduce
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Master data structures:
• Tracking

Locality:
• Scheduling, placement of intermediate data

Task granularity:
• Finer granularity: more flexibility, management operation execution time
• Coarse granularity: lower management overhead

Fault tolerance:
• Master: standby replication
• Worker: detect failures or stragglers and re-execute

Failure semantics:
• Importance of Consistency and complete results

Backup tasks:
• Inevitable failures: speculative task backup

Map Reduce: Design Decisions
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Failure inevitable: cannot re-execute entire operation
Fault-tolerant mechanism: requires intermediate data availability

• Serialiation to/from persistent storage
• Remote access and data movement

Data amplification:
• Intermediate data may be much larger than input
• Executions are iterative
• Storage level replication

System scale: cannot assume best-in-class storage devices

Map Reduce: Limitations



21

Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing

Faster analytics (10x) versus Hadoop
• Workloads: graph, streaming, SQL, Machine Learning, etc.
• Languages: Java, Python, Scala, etc.
• Platforms: AWS, Kubernetes, etc.

Apache Spark

Spark

https://cs.stanford.edu/%7Ematei/papers/2012/nsdi_spark.pdf
https://spark.apache.org/
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Allow in-memory data sharing
• Fast DRAM versus slow 

hard disk
• No serialization cost

Fault-tolerant

Spark: Goals
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Immutable partitioned record collection

Created using transformations
• Operations on data in stable 

storage
• Map/join/filter on other RDDs

Used via actions (count, collect, save)
RDDs map back to source

• Compute partitions from data in 
stable storage

Users control persistence and partitioning

Resilient Distributed Datasets: Introduction
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Console log mining example

Resilient Distributed Datasets: Example
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Resilient Distributed Datasets: Transformations & Actions
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Program defines dependencies

Actions:
• Directed acyclic graph (DAG)
• Minimize dependencies
• Optimize parallelism
• Limit I/O contention

Tasks assigned based on data locality

Resilient Distributed Datasets: Scheduling Action Execution
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Data in memory?
• Distributed shared memory like 

runtime
• Log updates
• Persist lineage

Log coarse grained operations applied to all 
items in RDD elements

Spark: Goals
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items in RDD elements
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Up to 20x better than Hadoop
• Iterative
• Machine learning
• Graph applications

Analytics report generation 40x

Rapid failure recovery

1TB dataset queries with 5-7 second 
latencies

Spark: Evaluation
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Lesson Review
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Systems for scalable data processing

MapReduce

Spark

Distributed Data Analytics
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Questions?
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