CPSC 416 Distributed
Systems

Winter 2022 Term 2 (March 23, 2023)

Tony Mason (fsgeek@cs.ubc.ca), Lecturer

UB

0

€

Teaching Assistants

Andy Hsu (andy.hsu@alumni.ubc.ca)

Hamid Ramezanikebrya (hamid@ece.ubc.ca)

Jonas Tai (jonastai@student.ubc.ca)

Cathy Yang (kaigiany@student.ubc.ca)

UB

0

€

mailto:andy.hsu@alumni.ubc.ca
mailto:hamid@ece.ubc.ca
mailto:jonastai@student.ubc.ca
mailto:kaiqiany@student.ubc.ca

Office Hours

Remember: Use Piazza for all official course-related communications
Not on Piazza? Not official.
Canvas “comments/messages” are not monitored

offce Hours: LA L S

Tony Monday 14:00-15:00 Discord
Wednesday 16:00-17:00
Andy Thursday 19:00-20:30 Discord
Hamid Friday 16:30-18:00 Kaiser 4075
Jonas Thursday 13:00-14:00 Online (see
Piazza)

Cathy Friday 09:00-10:30 X237

UB

0

€

Self-Assessment

This week
» DP3 Implementation Report (Thu @ 23:59)

Next week
» Capstone Status Report (Tue @ 17:00)
» DP3: Peer Review Implementation Reports (Thu @ 17:00)
* Note: no self-assessment activity

Note:
* You are strongly encouraged to collaborate with others on this
* You should use tools at your disposal to answer these questions
* Do not forget to submit it.

Software Upgrade Failures in Distributed Systems

This is not about just a single failure, but a common class of failures.

Upgrade is one of the most disruptive yet unavoidable maintenance tasks that undermine the availability W
of distnbuted systems. Any failure dunng an upgrade is catastrophic, as it further extends the service

disruption caused by the upgrade. The increasing adoption of continuous deployment further increases

the frequency and burden of the upgrade task. In practice, upgrade failures have caused many of

today's high-profile cloud outages. Unfortunately, there has been little understanding of their

characteristics.

Understanding and Detecting Software Upgrade Failures in
Distributed Systems

Cassandra HBase HDFS Kafka MapReduce Mesos Yarn ZooKeeper

Presented at SOSP 2021 4 13 38 7 1 8 8 4

Table 1. Numbers of upgrade failures we analyzed.

By analyzing upgrade failures of 123 failures, the authors created:
* Insight into severity, root causes, exposing conditions, and fix strategies
* DUPChecker: a testing framework for upgrade class failures
» ltidentified 20 previously unknown upgrade failure causes in 4 distributed

S y S te ms Failure | From To C? Cause
15794 | 3.114 4.0 v Data-syntax Incomp.
16258 | 3.11.6 4.0 Data-syntax Incomp.
16301 | 3.11.9 4.0 v Code Incompatibility
< 16292 | 3.0.0 3.2.0 Data-syntax Incomp.
= 16257 | 2.1.0 220 Data-syntax Incomp.
5 16264 | 200 210 Data-semantics Incomp.
5 16265 | 2.0.0 2.1.0 Data-syntax Incomp.
16266 | 2.0.0 2.1.0 v Data-syntax Incomp.
16267 | 1.1.0 120 ' Data-semantics Incomp.
16268 | 1.1.0 1.2.0 Data-syntax Incomp.
16269 | 1.1.0 1.2.0 Data-syntax Incomp.
25239 | 2.3.3 3.0 Broken Upgrade Op.
24430 | 22 24 Broken Dependency
% 24556 |22 23 / Broken Dependency
£ 25238 | 220 233 Data-syntax Incomp.
25259 | 241 220 Broken Upgrade Op.
25260 | 206 2.1.1 Broken Upgrade Op.
Kafka10041 | 1.1 24 v Broken Dependency
4 24440 | 237 3.0.0 Data Syntax Incomp.
T 24493 | 211 237 Upgrade Operation

Table 5. DUPTester’s result on real-world systems. Failure number
is the report ticket number on JIRA. C.?: whether the bug is already
confirmed by developers.

https://dl.acm.org/doi/10.1145/3477132.3483577

Lesson Goals

Distributed Data Analytics

MapReduce

Spark (and RDDs)

C

BC

€

10

Common Techniques

Data Parallel (Divide & Conquer):

Divide Data across nodes

Load balancing, decomposition
Messaging for data dependencies
Application usage

C
W
0

11

Common Techniques

=

Pipelining

Divide work into smaller tasks
« Small number of tasks per
node
« Faster than generality
Data streamed in chunks through
task pipeline
Increases throughput

@-ﬁ

12

Common Techniques

Model Parallelism

Divide state across nodes
Less processing per node
Input passed to all nodes
Output combined from all
nodes

Must handle dependencies

13

Common Techniques

AN
SEG E
XX
%

combine output

Model Parallelism

Divide state across nodes UBC
Less processing per node W

Input passed to all nodes
Output combined from all
nodes

Must handle dependencies

14

MapReduce

MapReduce: Simplified Data Processing on Large Clusters, J. Dean, OSDI 2004.

* Hadoop MapReduce
* AWS infrastructure

UB

0

€

15

http://nil.csail.mit.edu/6.824/2018/papers/mapreduce.pdf

MapReduce

Input: master

+ Set of key-value pair records / \ %ls__(__:_:

Map function map o ".
* Input: unique key-value pair _." \
* Output: a new key-value pair \

Reduce function:

* Input: output from map function
* Output: final result

Master: orchestrates workers, 1/O, failure

workers

management
16

MapReduce

m/apmaster
(il

-
@\ /

workers

reduce

... \
B
g/

Wordcount example:
« Input: Collection of files UBC
Map function: W

« Input: File, key=filename, content=value
« Output: file with key=word, value=list of
counts
Reduce function:
* Input: file with key=word, value=list of
counts
» Output: list of words with total counts
Other examples:
» URL access frequency, page rank,
inverted word index

17

MapReduce

Combining Techniques:
« Data parallel: chunks to mappers
* Pipelining: mapper to reducer
* Model parallelism: reducers process
parts of key space, combine

Dataflow model means flow of data determines
execution

master

m/ap N\
07 4

workers

18

Map Reduce: Design Decisions

Master data structures:

« Tracking
Locality:

« Scheduling, placement of intermediate data
Task granularity:

* Finer granularity: more flexibility, management operation execution time

» Coarse granularity: lower management overhead
Fault tolerance:

* Master: standby replication

« Worker: detect failures or stragglers and re-execute
Failure semantics:

« Importance of Consistency and complete results
Backup tasks:

* Inevitable failures: speculative task backup

19

Map Reduce: Limitations

HDFS HDFS HDFS

read write read write

Input

Failure inevitable: cannot re-execute entire operation

Fault-tolerant mechanism: requires intermediate data availability

« Serialiation to/from persistent storage
* Remote access and data movement
Data amplification:
* Intermediate data may be much larger than input
« Executions are iterative
« Storage level replication
System scale: cannot assume best-in-class storage devices

;—w"’ﬁ

20

Spark

Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing

Faster analytics (10x) versus Hadoop
» Workloads: graph, streaming, SQL, Machine Learning, etc.
« Languages: Java, Python, Scala, etc.
* Platforms: AWS, Kubernetes, etc.

Apache Spark

UB

0

€

21

https://cs.stanford.edu/%7Ematei/papers/2012/nsdi_spark.pdf
https://spark.apache.org/

Spark: Goals

Allow in-memory data sharing
 Fast DRAM versus slow
hard disk
* No serialization cost

Fault-tolerant

HDFS
read

Input

HDFS
write

HDFS
read

HDFS
write

22

Resilient Distributed Datasets:

RDDA1

=

xform()

RDD2=RDD1 .xform()

~—

lineage

D
e/

(11]

can be partitioned and on
different machines

Input

Just recompute from storage
or other RDDs in lineage

Introduction

Immutable partitioned record collection
UB

0

€

Created using transformations
» Operations on data in stable
storage
» Mapljoin/filter on other RDDs
Used via actions (count, collect, save)
RDDs map back to source
« Compute partitions from data in
stable storage
Users control persistence and partitioning

23

Resilient Distributed Datasets: Example
Console log mining example

lines = spark.textFile("hdfs://...") w
errors = lines.filter(_.startsWith("ERROR"))
errors.persist()

errors. count()

// Return the time fields of errors mentioning
// HDFS as an array (assuming time is field
// number 3 in a tab-separated format):
errors.filter(—contains("HDFS"))
.mapC.split('W)(3))
.collect()

RDD:
filter(_.starts With("ERROR’)) Data representation

Lineage: parent RDDs and transformation functions
RDD Lineage: fitter(_.contains(“HDFS~)) Metadata on partitions, partitioning scheme and

HDES errors dependencies

map(_.split(\t’)(3))

Evaluated on .action()

24

Resilient Distributed Datasets: Transformations & Actions

Transformations

map(f:T=U)

filter(f : T = Bool)

flatMap(f : T = Seq[U])

sample(fraction : Float)

groupByKey()

reduceByKey(f: (V.V) = V)

union()

Join()

cogroup()

crossProduct()

mapValues(f 1 V= W)

sort(c : Comparator[K])

partitionBy(p : Partitioner[K])
count()

collect()

reduce(f: (T, T)=T)

lookup(k : K)

save(path : String)

RDDI[T] = RDD[U]

RDDI[T] = RDD|T]

RDD[T] = RDD[U]

RDDIT] = RDD[T] (Deterministic sampling)
RDD[{K, V)] = RDD[(K, Seq[V])]

RDD[{K, V)] = RDD[(K, V)]

(RDDI[T],RDD[T]) = RDD[T]

(RDD[(K, V)],RDD[(K, W)]) = RDD[(K, (V, W))]
(RDDI[(K, V)],RDD[(K, W)]) = RDD[(K, (Seq[V], Seq[W1))]
(RDD[T],RDD[U]) = RDD[(T, U)]

RDDI(K, V)] = RDD[(K, W)] (Preserves partitioning)
RDD[(K, V)] = RDD[(K, V)]

RDDI[(K, V)] = RDD[(K, V)]

RDDIT] = Long

RDD[T] => Seq[T]

RDD[T]=T

RDD[(K, V)] = Seq[V] (On hash/range partitioned RDDs)
Outputs RDD to a storage system, e.g., HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

Narrow
Dependencies:

map, filter

join with inputs
co-partitioned

Dependencies:

groupByKey

join with inputs not
co-partitioned

25

Resilient Distributed Datasets: Scheduling Action Execution

Program defines dependencies

Actions: w

» Directed acyclic graph (DAG)

* Minimize dependencies

* Optimize parallelism

* Limit I/O contention

Tasks assigned based on data locality

26

Spark: Goals

Data in memory?
» Distributed shared memory like
runtime
* Log updates
* Persist lineage

Log coarse grained operations applied to all
items in RDD elements

¢ less data to persist in
execution critical path

0

UB

€

() read data as low as once, less
slow storage I/0

&> more control on locality

@ recovery time

27

Spark: Goals

Data in memory?
* Distributed shared memory like

Network Memory UBC
A ' ' ' o
Fine bandlmdth band'W|dth runtime W
K-V stores, | Bestfor | * Log updates
databases, @419transactional ! . ist li
g @ RAMCIoud ' workloads ! Persist lineage
e |]
@ @©
= '8- I |
E E : : Bestfor LOg coarse grained operations applied to all
G o ! ! biTChd items in RDD elements
workloads
HOFS @ RDDs @),
' I
Course | |
>
Low High

Write Throughput

28

Spark: Evaluation

Up to 20x better than Hadoop
« lterative
* Machine learning
» Graph applications

Analytics report generation 40x
Rapid failure recovery

1TB dataset queries with 5-7 second
latencies

200 7

—
o)
o

1

100 7

Time per iteration (s)
a1
o

o
|

171

B Hadoop

[Basic Spark

B Spark +
Controlled
Partitioning

29

Lesson Review

Distributed Data Analytics

Systems for scalable data processing
MapReduce

Spark

Cc
o
0

i

31

Questions?

32

THE UNIVERSITY OF BRITISH COLUMBIA

	CPSC 416 Distributed Systems
	Logistics
	Teaching Assistants
	Office Hours
	Self-Assessment
	Today’s Failure
	Software Upgrade Failures in Distributed Systems
	Understanding and Detecting Software Upgrade Failures in Distributed Systems
	Lesson Goals
	Distributed Data Analytics
	Common Techniques
	Common Techniques
	Common Techniques
	Common Techniques
	MapReduce
	MapReduce
	MapReduce
	MapReduce
	Map Reduce: Design Decisions
	Map Reduce: Limitations
	Spark
	Spark: Goals
	Resilient Distributed Datasets: Introduction
	Resilient Distributed Datasets: Example
	Resilient Distributed Datasets: Transformations & Actions
	Resilient Distributed Datasets: Scheduling Action Execution
	Spark: Goals
	Spark: Goals
	Spark: Evaluation
	Lesson Review
	Distributed Data Analytics
	Questions?
	Click to edit Master title style

