
Winter 2022 Term 2 (March 23, 2023)

Tony Mason (fsgeek@cs.ubc.ca), Lecturer

CPSC 416 Distributed
Systems

2

Logistics

3

Andy Hsu (andy.hsu@alumni.ubc.ca)

Hamid Ramezanikebrya (hamid@ece.ubc.ca)

Jonas Tai (jonastai@student.ubc.ca)

Cathy Yang (kaiqiany@student.ubc.ca)

Teaching Assistants

mailto:andy.hsu@alumni.ubc.ca
mailto:hamid@ece.ubc.ca
mailto:jonastai@student.ubc.ca
mailto:kaiqiany@student.ubc.ca

4

Remember: Use Piazza for all official course-related communications
• Not on Piazza? Not official.
• Canvas “comments/messages” are not monitored

Office Hours:

Office Hours

Who When Where
Tony Monday 14:00-15:00

Wednesday 16:00-17:00
Discord

Andy Thursday 19:00-20:30 Discord
Hamid Friday 16:30-18:00 Kaiser 4075
Jonas Thursday 13:00-14:00 Online (see

Piazza)
Cathy Friday 09:00-10:30 X237

5

This week
• DP3 Implementation Report (Thu @ 23:59)

Next week
• Capstone Status Report (Tue @ 17:00)
• DP3: Peer Review Implementation Reports (Thu @ 17:00)
• Note: no self-assessment activity

Note:
• You are strongly encouraged to collaborate with others on this
• You should use tools at your disposal to answer these questions
• Do not forget to submit it.

Self-Assessment

6

Today’s Failure

7

This is not about just a single failure, but a common class of failures.

Software Upgrade Failures in Distributed Systems

8

Presented at SOSP 2021

By analyzing upgrade failures of 123 failures, the authors created:
• Insight into severity, root causes, exposing conditions, and fix strategies
• DUPChecker: a testing framework for upgrade class failures

• It identified 20 previously unknown upgrade failure causes in 4 distributed
systems

Understanding and Detecting Software Upgrade Failures in
Distributed Systems

https://dl.acm.org/doi/10.1145/3477132.3483577

9

Lesson Goals

10

MapReduce

Spark (and RDDs)

Distributed Data Analytics

11

Data Parallel (Divide & Conquer):
• Divide Data across nodes
• Load balancing, decomposition
• Messaging for data dependencies
• Application usage

Common Techniques

12

Pipelining
• Divide work into smaller tasks

• Small number of tasks per
node

• Faster than generality
• Data streamed in chunks through

task pipeline
• Increases throughput

Common Techniques

13

Model Parallelism
• Divide state across nodes
• Less processing per node
• Input passed to all nodes
• Output combined from all

nodes
• Must handle dependencies

Common Techniques

14

Model Parallelism
• Divide state across nodes
• Less processing per node
• Input passed to all nodes
• Output combined from all

nodes
• Must handle dependencies

Common Techniques

15

MapReduce: Simplified Data Processing on Large Clusters, J. Dean, OSDI 2004.

• Hadoop MapReduce
• AWS infrastructure

MapReduce

http://nil.csail.mit.edu/6.824/2018/papers/mapreduce.pdf

16

Input:
• Set of key-value pair records

Map function
• Input: unique key-value pair
• Output: a new key-value pair

Reduce function:
• Input: output from map function
• Output: final result

Master: orchestrates workers, I/O, failure
management

MapReduce

17

Wordcount example:
• Input: Collection of files

Map function:
• Input: File, key=filename, content=value
• Output: file with key=word, value=list of

counts
Reduce function:

• Input: file with key=word, value=list of
counts

• Output: list of words with total counts
Other examples:

• URL access frequency, page rank,
inverted word index

MapReduce

18

Combining Techniques:
• Data parallel: chunks to mappers
• Pipelining: mapper to reducer
• Model parallelism: reducers process

parts of key space, combine

Dataflow model means flow of data determines
execution

MapReduce

19

Master data structures:
• Tracking

Locality:
• Scheduling, placement of intermediate data

Task granularity:
• Finer granularity: more flexibility, management operation execution time
• Coarse granularity: lower management overhead

Fault tolerance:
• Master: standby replication
• Worker: detect failures or stragglers and re-execute

Failure semantics:
• Importance of Consistency and complete results

Backup tasks:
• Inevitable failures: speculative task backup

Map Reduce: Design Decisions

20

Failure inevitable: cannot re-execute entire operation
Fault-tolerant mechanism: requires intermediate data availability

• Serialiation to/from persistent storage
• Remote access and data movement

Data amplification:
• Intermediate data may be much larger than input
• Executions are iterative
• Storage level replication

System scale: cannot assume best-in-class storage devices

Map Reduce: Limitations

21

Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing

Faster analytics (10x) versus Hadoop
• Workloads: graph, streaming, SQL, Machine Learning, etc.
• Languages: Java, Python, Scala, etc.
• Platforms: AWS, Kubernetes, etc.

Apache Spark

Spark

https://cs.stanford.edu/%7Ematei/papers/2012/nsdi_spark.pdf
https://spark.apache.org/

22

Allow in-memory data sharing
• Fast DRAM versus slow

hard disk
• No serialization cost

Fault-tolerant

Spark: Goals

23

Immutable partitioned record collection

Created using transformations
• Operations on data in stable

storage
• Map/join/filter on other RDDs

Used via actions (count, collect, save)
RDDs map back to source

• Compute partitions from data in
stable storage

Users control persistence and partitioning

Resilient Distributed Datasets: Introduction

24

Console log mining example

Resilient Distributed Datasets: Example

25

Resilient Distributed Datasets: Transformations & Actions

26

Program defines dependencies

Actions:
• Directed acyclic graph (DAG)
• Minimize dependencies
• Optimize parallelism
• Limit I/O contention

Tasks assigned based on data locality

Resilient Distributed Datasets: Scheduling Action Execution

27

Data in memory?
• Distributed shared memory like

runtime
• Log updates
• Persist lineage

Log coarse grained operations applied to all
items in RDD elements

Spark: Goals

28

Data in memory?
• Distributed shared memory like

runtime
• Log updates
• Persist lineage

Log coarse grained operations applied to all
items in RDD elements

Spark: Goals

29

Up to 20x better than Hadoop
• Iterative
• Machine learning
• Graph applications

Analytics report generation 40x

Rapid failure recovery

1TB dataset queries with 5-7 second
latencies

Spark: Evaluation

30

Lesson Review

31

Systems for scalable data processing

MapReduce

Spark

Distributed Data Analytics

32

Questions?

	CPSC 416 Distributed Systems
	Logistics
	Teaching Assistants
	Office Hours
	Self-Assessment
	Today’s Failure
	Software Upgrade Failures in Distributed Systems
	Understanding and Detecting Software Upgrade Failures in Distributed Systems
	Lesson Goals
	Distributed Data Analytics
	Common Techniques
	Common Techniques
	Common Techniques
	Common Techniques
	MapReduce
	MapReduce
	MapReduce
	MapReduce
	Map Reduce: Design Decisions
	Map Reduce: Limitations
	Spark
	Spark: Goals
	Resilient Distributed Datasets: Introduction
	Resilient Distributed Datasets: Example
	Resilient Distributed Datasets: Transformations & Actions
	Resilient Distributed Datasets: Scheduling Action Execution
	Spark: Goals
	Spark: Goals
	Spark: Evaluation
	Lesson Review
	Distributed Data Analytics
	Questions?
	Click to edit Master title style

