CPSC 416 Distributed
Systems

Winter 2023 Term 1 (November 9, 2023)

Tony Mason (fsgeek@cs.ubc.ca), Lecturer

UB

0

€

Teaching Assistants

Andy Hsu (andy.hsu@alumni.ubc.ca)

Hamid Ramezanikebrya (hamid@ece.ubc.ca)

Jonas Tai (jonastai@student.ubc.ca)

Cathy Yang (kaigiany@student.ubc.ca)

UB

0

€

mailto:andy.hsu@alumni.ubc.ca
mailto:hamid@ece.ubc.ca
mailto:jonastai@student.ubc.ca
mailto:kaiqiany@student.ubc.ca

Office Hours

Remember: Use Piazza for all official course-related communications
UB

0

Not on Piazza? Not official.

€

Canvas “comments/messages” are not monitored

offce Hours: LA L S

Tony Monday 14:00-15:00 Discord
Wednesday 16:00-17:00

Andy Thursday 19:00-20:30 Discord

Hamid Friday 16:30-18:00 Kaiser 4075

Jonas Thursday 13:00-14:00 X241

Cathy Friday 09:00-10:30 X237

Self-Assessment

This week
* DP3 Implementation Report (Today @ 23:59)

Next week
* No class (Tue 2023/11/14)
» Usual self-assessment activity (Thu @ 17:00)
+ Capstone Week 5 Report (Thu @ 17:00)
* DP3 Implementation Report Peer Review (Thu @ 17:00)
+ Capstone Project Team Declaration (Thu @ 17:00)

Note:
* You are strongly encouraged to collaborate with others on this
* You should use tools at your disposal to answer these questions
* Do not forget to submit it.

Readings

Required:
The Byzantine Generals Problem (Lamport/Shostak/Pease, TOPLOS 1982)
Practical Byzantine Fault Tolerance (Castro/Liskov, OSDI 1999)

Recommended:
Making Reads in BFT State Machine Replication Fast, Linearizable, and Live (2021)

https://www.microsoft.com/en-us/research/uploads/prod/2016/12/The-Byzantine-Generals-Problem.pdf
https://pmg.csail.mit.edu/papers/osdi99.pdf
https://arxiv.org/pdf/2107.11144.pdf

Linux Kernel Bug

Date: June 30, 2012
Time: 23:60 UTC uB
Source: Wired

0

€

International Telecommunications Union (ITU) added one second to the clock (a leap second)
Impact: Reddit, LinkedIn, Quantas Airlines Reservations failed (plus many others)
Bug: Linux kernel

Root cause: bug in the clock logic caused “thundering herd” (waking all threads up) and the
massive CPU load caused cascading failures.

https://www.wired.com/2012/07/leap-second-glitch-explained/

Lesson Goals

Byzantine Fault Tolerance

Byzantine Systems
Practical Byzantine Fault Tolerance

Blockchain

Cc
o
0

i

10

Introduction: Byzantine Fault Tolerance

Consensus with Byzantine failures
Practical Byzantine Fault Tolerance (pBFT)

Blockchain: Byzantine proof distributed consensus

11

Byzantine Failures
Model change: Nodes continue to participate after failure

« Could be malicious
* Incorrect behaviour: incorrect messages

The Byzantine Generals Problem

UB

0

€

12

https://www.microsoft.com/en-us/research/uploads/prod/2016/12/The-Byzantine-Generals-Problem.pdf

Byzantine Generals Problem

Attack or
retreat?

Attack or
retreat?

]

msg

Attack or
retreat?

J

UB

0

€

13

Byzantine Generals Problem

l Is consensus possible? \
msng
Attack or
retreat’?

Clty

Attack or
retreat’?

Qmsgz
Attack or
G3 retreat?
14

€=

Goals of Byzantine Fault Tolerance

Achieve consensus

« Safety
 Liveness
« Validity

Tolerate f failures

Asynchronous network

Allow Byzantine behaviour

UB

0

€

15

How?

Messages
» Cryptographic signatures

Malicious participants
» Increase number of total participants

 For ffaults: need 3f + 1 nodes

Corrupt Leader
* Add checks among participants

Liveness: bounded delay (“eventual synchrony”)

0

UB

€

16

Practical Byzantine Fault Tolerance

Practical Byzantine Fault Tolerance (Castro & Liskov, OSDI 1999)

High performance
» Tolerates ffailures with 3f + 1 nodes
* 97% as fast with replication (using NFS)

UB

0

€

17

https://dl.acm.org/doi/10.5555/296806.296824

pBFT: System Model

Replicated Service
« 3f+ 1 replicated nodes (for up to ffailures)
* Primary + replicas

Uses a view defined by current primary
Replicas are replicated state machines

* Consistent
« State includes: service state, message log, current view

Replicated Service

Communications integrity
« Digests

* Public keys

Client

18

Why we need 3f + 1

=plicated Servigt

Client

N nodes

Permit f faults (including Byzantine)

Requires quorum among N-f nodes

N > 3f (e.g., 3f + 1)

19

PBFT: Request Processing

request

Wait for
f+1

reply same
responses

Request Processing

Adapted from: http://pmg.csail.mit.edu/papers/osdi99.paf

€

20

pBFT: 3PC protocol

reply

commit

21

Adapted from: http.//pmg.csail. mit.edu/papers/osdi99.pdf

pPBFT: Pre-Prepare Phase

Leader multicasts pre-prepare request with the
UB

0

message to the backups.

€

request

pre-prepare

Leader records message in its log C

assign seq. #
Replicas accept pre-prepare if: 0 :
 Signature ¢ and digest w check . :
* Viewvis correct <<PRE-PREPARE, v, n, d>ap, m>>
* Sequence number u is new 2 _ 9

« usuchthat p < u <P. These are the

Y

watermarks 3

22

pBFT: Prepare Phase

pre-prepare; prepare

O

<PREPARE, v, n, d, o

At least one replica multicasts a prepare
message (after accepting pre-prepare)

Waits for consensus responses
« prepared messages
* Log contains pre-prepare and 2f
matching prepare
« Same view
« Same sequence number
« Same digest

UB

0

€

23

pBFT: Commit Phase

Replica multicasts commit message (after

I I
! I UBC
prepare) : =
prepare | commit | W
I I
Waits for responses C : :
I

e Committed

Commit when 1 . ' X
- Prepared is true ‘;’I
« 2f+ 1 matching committed messages 2 ¢> &
seen (including replica) 'w
3 A

Can reply to client once commited <COMMIT, v, n, D(m), .
24

pBFT: More Details (in Paper)

Garbage collection (log)

View changes

Liveness

Performance optimizations (message elimination)

Sample Byzantine-fault tolerant service (replicated NFS)

0

UB

€

25

BLOCKCHAIN

Atransaction is requested

The transaction is unified
with other transactions
as a block of data.

WORK

The transaction is broadcasted
to a network of nodes

The new block is added to the
blockchain in a transparent and
unalterable way.

The network validates the
transaction using known
algorithms

The transaction is complete

'O [©])

VALIDATION MAY INCLUDE

SMART CONTRACTS
[J

CRYPTOCURRENCY
OTHER RECORDS

BENEFITS OF THE BLOCKCHAIN
e
/@\ TRANSPARENCY AND TRACKING

T
-V/-) SIMPLERAND FASTER

©)
REDUCED COSTS
@ INCREASED TRUST

BLOCKCHAIN TECHNOLOGY USES

®

DIGITAL CURRENCY FINANCE

ot DATA STORAGE

&

GOVERNANCE ONLINE VOTING

HEALTHCARE INSURANCE

26

Bitcoin

Bitcoin: A Peer-to-Peer Electronic Cash System (Nakamoto, 2008)

Byzantine system: the “double spend”

Basic unit is the transaction block:
» Balanced set of operations
« Public
« Easily verified

Implements a distributed timestamp service

0

UB

€

27

https://bitcoin.org/bitcoin.pdf

Blockchain: the chain
A cryptographic hash is computed for each block of information.
New hash: previous block hash + hash of current block

» Creates the chain
* Makes it difficult to “rewrite history”

0

€

...' Hash _: Hash
Block Block

ltem ltem | | Iltem ltem

Blockchain: Ledger

Accounting 101 General Journal
— UBC
¢ Inflows - OUtﬂOWS General Journal Sheet Sheet No: 15 ri. I‘.'."‘i..
Date Account Ref. Debit Credit
2019
Nov 30 Depreciation expense GL810 4,000
Accumulated depreciation GL280 4,000

To record depreciation for November

Nov 30 Bad debt expense GL840 1,500
Allowance for doubtful accounts GL120 1,500

To allow for doubtful accounts at the month end

29

Blockchain: Proof of Work

Combine hash with a nonce

* Nonce is a value chosen so the hash has a specific number of zero bits (the

difficulty)

« Only way to find a nonce is to compute the hash

Block

— ™| Prev Hash

Monce

Tx

Tx

Block
> Prev Hash Nonce
Tx Tx

@-E

30

Blockchain: Garbage Collection

Block

Block Header (Block Hash)

Prev Hash

Nonce

Root Hash

N

Hash{H i

_____ AN

Hash[} ‘Hash1:

Hash23

‘Hash2! Hash3

..... 2 B e iR

Tx0

Tx

Tx2

T3

Transactions Hashed in a Merkle Tree

Block

Block Header (Block Hash)

Prev Hash MNonce

Root Hash

AN

Hash01 | Hash23 |

After Pruning Tx0-2 from the Block

31

Blockchain vs pBFT

Advantages

0 Decentralized consensus

0 Byzantine failures
Q Unreliable network

C

BC

€

Negatives

Q Tolerate f faults in N=3f+1

nodes!?

Communication costs
O(n”3)

32

Blockchain versus Bitcoin

Byzantine consensus for timestamped chained ledger blocks
* Not explicit in Nakamoto’s paper

Limits to participation
* Miners: must be willing to expend energy for Proof-of-work
« Cryptography

Incentivize good behavior
* Most participants want the product
» Economic factors discourage dishonesty (miners get rewards)

UB

0

€

33

Additional Readings

Algorand: Scaling Byzantine Agreements for Cryptocurrencies
(Gilad/Hemo/Micali/Vlachos/Zeldovich, SOSP 2017)

Algorand: the Defi company

Ethereum Proof-of-Stake

* Lower energy consumption

» Consensus based upon ownership (ergo “weighted quorum?”)
* Non-fungible tokens (NFT)

A Blockchain-based Land Title Management System for Bangladesh

UB

0

€

34

https://dl.acm.org/doi/10.1145/3132747.3132757
https://developer.algorand.org/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/nft/
https://www.sciencedirect.com/science/article/pii/S1319157820304912

Lesson Review

Byzantine Fault Tolerance

Byzantine Systems
Practical Byzantine Fault Tolerance

Blockchain

Cc
o
0

i

36

Questions?

37

THE UNIVERSITY OF BRITISH COLUMBIA

	CPSC 416 Distributed Systems
	Logistics
	Teaching Assistants
	Office Hours
	Self-Assessment
	Readings	
	Today’s Failure
	�Linux Kernel Bug
	Lesson Goals
	Byzantine Fault Tolerance
	Introduction: Byzantine Fault Tolerance
	Byzantine Failures
	Byzantine Generals Problem
	Byzantine Generals Problem
	Goals of Byzantine Fault Tolerance
	How?
	Practical Byzantine Fault Tolerance
	pBFT: System Model
	Why we need 3f + 1
	pBFT: Request Processing
	pBFT: 3PC protocol
	pBFT: Pre-Prepare Phase
	pBFT: Prepare Phase
	pBFT: Commit Phase
	pBFT: More Details (in Paper)
	Blockchain
	Bitcoin
	Blockchain: the chain
	Blockchain: Ledger
	Blockchain: Proof of Work
	Blockchain: Garbage Collection
	Blockchain vs pBFT
	Blockchain versus Bitcoin
	Additional Readings
	Lesson Review
	Byzantine Fault Tolerance
	Questions?
	Click to edit Master title style

