CPSC 416 Distributed
Systems

Winter 2023 Term 1 (October 26, 2023)

Tony Mason (fsgeek@cs.ubc.ca), Lecturer

UB

0

€

Teaching Assistants

Andy Hsu (andy.hsu@alumni.ubc.ca)

Hamid Ramezanikebrya (hamid@ece.ubc.ca)

Jonas Tai (jonastai@student.ubc.ca)

Cathy Yang (kaigiany@student.ubc.ca)

UB

0

€

mailto:andy.hsu@alumni.ubc.ca
mailto:hamid@ece.ubc.ca
mailto:jonastai@student.ubc.ca
mailto:kaiqiany@student.ubc.ca

Office Hours

Remember: Use Piazza for all official course-related communications
UB

0

Not on Piazza? Not official.

€

Canvas “comments/messages” are not monitored

offce Hours: LA L S

Tony Monday 14:00-15:00 Discord
Wednesday 16:00-17:00

Andy Thursday 19:00-20:30 Discord

Hamid Friday 16:30-18:00 Kaiser 4075

Jonas Thursday 13:00-14:00 X241

Cathy Friday 09:00-10:30 X237

Self-Assessment

This week
» Design Project 2 Peer Feedback: Implementation Report Due Thursday (October 26 @ 23:59)

Next week
+ Self-Assessment Due Tuesday (October 31 @ 17:00)
» Design Project 3 Peer Feedback: Design Due Tuesday (October 31 @ 17:00)
« Self-Assessment Due Thursday (November 2 @ 17:00)

Note:
* You are strongly encouraged to collaborate with others on this
* You should use tools at your disposal to answer these questions
* Do not forget to submit it.

Failure Avoided
Using TLA+

“TLA* made it tractable for an ordinary software engineer to reason about a tricky
distributed systems problem, and it found a bug introduced by an “optimization” | tried to
add (classic). The bug required 12 sequential steps to occur and would not have been

uncovered by ordinary testing.”

Andrew Helwer (Blog)

0

UB

€

https://ahelwer.ca/post/2023-04-05-checkpoint-coordination/

0

UB

€

The major difference between a thing that might go wrong and a thing
that cannot possibly go wrong is that when a thing that cannot possibly

go wrong goes wrong it usually turns out to be impossible to get at or

repair.
—Douglas Adams, Mostly Harmless (1992)

Learning Goals (Kleppmann Chapter 5)

What is replication
Leaders & Followers
Replication Lag
Multi-leader replication

Leaderless replication

10

Replication
Maintaining identical copies of data on different machines

“Degenerate” case for 2PC/3PC transactions
« 2PC/3PC is about consistency across databases
* Replication is about consistency across identical databases

Read-only data is easy to replicate
Read-write data:

 How we replicate
* How we deal with “out of sync” due to transient failure (failure-resume model)

UB

0

€

11

Leaders & Followers

Replica = a copy of the database
Database write must propagate to every replica
Leader/follower model
* Writes go to leader
» Writes propagate to followers from the leader
» Ordering details are specific to the protocol.

* Reads usually come from any of the replicas
Synchronous versus Asynchronous update (consistency) — Chain Replication, CRAQ.
Configuration changes (add remove/followers, replace leader)
Catchup

* Follower: incremental restore from log(s)

* Leader: much harder to implement correctly

0

UB

€

12

Replication Lag

Eventual consistency — higher availability, weaker consistency (CA trade-off)

Consistency models (again):

0

UB

€

Read your own writes

Monotonic reads

Consistent prefix reads (causality related operations, preserve write order)
Read-after-write

Strong consistency — transactions/quorum consensus

13

Multi-leader Replication

Leader-based replication
« Simple to understand/implement
» Creates a bottleneck
« Complex failure recovery semantics
Multi-leader:
* When performance benefit outweighs added complexity
« Write conflict handling (sync/async, avoidance, merging)
* Disconnected operation
+ Collaborative editing
Topologies

0

UB

€

14

Leaderless Replication

When every node is a leader, no node is a leader
* No need to handle leader failure
» Client directly proposes changes
* Reads require querying multiple nodes
* Highest version wins
« Can you see how this might work with quorum consensus?
« Catch-up
* Reader submits latest version to stale nodes
» Special background process “consistency checks” replicas
Monitoring system (“detect problems before they become serious problems”)
“Sloppy” quorum
Multi-data center
Concurrent writes (back to conflict resolution)

UB

0

€

15

Conflict Resolution (Redux)

Last writer wins
* We have to define what this means (e.g., no a priori definite order)

Happens-before (causal relationship)

Write-merging
* Push the problem back to the client

Versioning
* Use vectors — version number per replica

UB

0

€

16

Questions?

17

THE UNIVERSITY OF BRITISH COLUMBIA

	CPSC 416 Distributed Systems
	Logistics
	Teaching Assistants
	Office Hours
	Self-Assessment
	Today’s Failure
	Failure Avoided
	Kleppmann Chapter 5
	Slide Number 9
	Learning Goals (Kleppmann Chapter 5)
	Replication
	Leaders & Followers
	Replication Lag
	Multi-leader Replication
	Leaderless Replication
	Conflict Resolution (Redux)
	Questions?
	Click to edit Master title style

