
Winter 2023 Term 1 (October 26, 2023)

Tony Mason (fsgeek@cs.ubc.ca), Lecturer

CPSC 416 Distributed
Systems

2

Logistics

3

Andy Hsu (andy.hsu@alumni.ubc.ca)

Hamid Ramezanikebrya (hamid@ece.ubc.ca)

Jonas Tai (jonastai@student.ubc.ca)

Cathy Yang (kaiqiany@student.ubc.ca)

Teaching Assistants

mailto:andy.hsu@alumni.ubc.ca
mailto:hamid@ece.ubc.ca
mailto:jonastai@student.ubc.ca
mailto:kaiqiany@student.ubc.ca

4

Remember: Use Piazza for all official course-related communications
• Not on Piazza? Not official.
• Canvas “comments/messages” are not monitored

Office Hours:

Office Hours

Who When Where
Tony Monday 14:00-15:00

Wednesday 16:00-17:00
Discord

Andy Thursday 19:00-20:30 Discord
Hamid Friday 16:30-18:00 Kaiser 4075
Jonas Thursday 13:00-14:00 X241
Cathy Friday 09:00-10:30 X237

5

This week
• Design Project 2 Peer Feedback: Implementation Report Due Thursday (October 26 @ 23:59)

Next week
• Self-Assessment Due Tuesday (October 31 @ 17:00)
• Design Project 3 Peer Feedback: Design Due Tuesday (October 31 @ 17:00)
• Self-Assessment Due Thursday (November 2 @ 17:00)

Note:
• You are strongly encouraged to collaborate with others on this
• You should use tools at your disposal to answer these questions
• Do not forget to submit it.

Self-Assessment

6

Today’s Failure

7

Using TLA+

“TLA⁺ made it tractable for an ordinary software engineer to reason about a tricky
distributed systems problem, and it found a bug introduced by an “optimization” I tried to
add (classic). The bug required 12 sequential steps to occur and would not have been
uncovered by ordinary testing.”

Andrew Helwer (Blog)

Failure Avoided

https://ahelwer.ca/post/2023-04-05-checkpoint-coordination/

8

Kleppmann Chapter 5

9

10

What is replication

Leaders & Followers

Replication Lag

Multi-leader replication

Leaderless replication

Learning Goals (Kleppmann Chapter 5)

11

Maintaining identical copies of data on different machines

“Degenerate” case for 2PC/3PC transactions
• 2PC/3PC is about consistency across databases
• Replication is about consistency across identical databases

Read-only data is easy to replicate

Read-write data:
• How we replicate
• How we deal with “out of sync” due to transient failure (failure-resume model)

Replication

12

Replica = a copy of the database
Database write must propagate to every replica
Leader/follower model

• Writes go to leader
• Writes propagate to followers from the leader

• Ordering details are specific to the protocol.
• Reads usually come from any of the replicas

Synchronous versus Asynchronous update (consistency) – Chain Replication, CRAQ.
Configuration changes (add remove/followers, replace leader)
Catchup

• Follower: incremental restore from log(s)
• Leader: much harder to implement correctly

Leaders & Followers

13

Eventual consistency – higher availability, weaker consistency (CA trade-off)
Consistency models (again):

• Read your own writes
• Monotonic reads
• Consistent prefix reads (causality related operations, preserve write order)
• Read-after-write
• Strong consistency – transactions/quorum consensus

Replication Lag

14

Leader-based replication
• Simple to understand/implement
• Creates a bottleneck
• Complex failure recovery semantics

Multi-leader:
• When performance benefit outweighs added complexity

• Write conflict handling (sync/async, avoidance, merging)
• Disconnected operation
• Collaborative editing

Topologies

Multi-leader Replication

15

When every node is a leader, no node is a leader
• No need to handle leader failure
• Client directly proposes changes
• Reads require querying multiple nodes

• Highest version wins
• Can you see how this might work with quorum consensus?

• Catch-up
• Reader submits latest version to stale nodes
• Special background process “consistency checks” replicas

Monitoring system (“detect problems before they become serious problems”)
“Sloppy” quorum
Multi-data center
Concurrent writes (back to conflict resolution)

Leaderless Replication

16

Last writer wins
• We have to define what this means (e.g., no a priori definite order)

Happens-before (causal relationship)

Write-merging
• Push the problem back to the client

Versioning
• Use vectors – version number per replica

Conflict Resolution (Redux)

17

Questions?

	CPSC 416 Distributed Systems
	Logistics
	Teaching Assistants
	Office Hours
	Self-Assessment
	Today’s Failure
	Failure Avoided
	Kleppmann Chapter 5
	Slide Number 9
	Learning Goals (Kleppmann Chapter 5)
	Replication
	Leaders & Followers
	Replication Lag
	Multi-leader Replication
	Leaderless Replication
	Conflict Resolution (Redux)
	Questions?
	Click to edit Master title style

