
Winter 2023 Term 1 (October 17, 2023)

Tony Mason (fsgeek@cs.ubc.ca), Lecturer

CPSC 416 Distributed
Systems

2

Logistics

3

Andy Hsu (andy.hsu@alumni.ubc.ca)

Hamid Ramezanikebrya (hamid@ece.ubc.ca)

Jonas Tai (jonastai@student.ubc.ca)

Cathy Yang (kaiqiany@student.ubc.ca)

Teaching Assistants

mailto:andy.hsu@alumni.ubc.ca
mailto:hamid@ece.ubc.ca
mailto:jonastai@student.ubc.ca
mailto:kaiqiany@student.ubc.ca

4

Remember: Use Piazza for all official course-related communications
• Not on Piazza? Not official.
• Canvas “comments/messages” are not monitored

Office Hours:

Office Hours

Who When Where
Tony Monday 14:00-15:00

Wednesday 16:00-17:00
Discord

Andy Thursday 19:00-20:30 Discord
Hamid Friday 16:30-18:00 Kaiser 4075
Jonas Thursday 13:00-14:00 X241
Cathy Friday 09:00-10:30 X237

5

This week
• Design Project 3 Team Declaration Deadline (Today @ 23:59)
• Post-lecture self-assessment activity – Due Thursday (October 12 @ 17:00)
• Design Project 2 Feedback Due Thursday (October 19 @ 17:00)

Next week
• Design Project 3 Due Tuesday (October 24 @ 17:00)
• Design Project 2 Code Due Thursday (October 26 @ 17:00)
• Design Project 2 Implementation Report Due Thursday (October 26 @ 23:59)

Note:
• You are strongly encouraged to collaborate with others on this
• You should use tools at your disposal to answer these questions
• Do not forget to submit it.

Self-Assessment

6

Today’s Failure

7

Event: October 21, 2018 22:52 UTC

Planned outage: goal is to replace a failing 100Gb/s optical network device.

“Connectivity between these two locations was restored in 43 seconds, but this brief
outage triggered a chain of events that led to 24 hours and 11 minutes of service
degradation.”

Infrastructure: MySQL with Orchestrator to manage cluster topologies.

Note: Orchestrator uses Raft for consensus.

Github.com Outage

8

Network goes out: Raft starts “leadership deselection”

Note: optical link was between two Eastern US sites.

West coast data center and East coast Orchestrator form quorum

Fail over to clusters in West coast data center: write operations begin working.

Network fixed: traffic starts going to West coast site

Note: East coast had some updates that had not propagated to west coast yet.
This blocked primary returning to East coast.

Github.com Outage

9

Things come unraveled due to increased latency, unexpected topologies.
Decision to degrade service rather than compromise consistency.

Start restoring databases from backup.

Restoration was started October 22, 2018 00:05 UTC
Restoration completed and service restored October 22, 2018 23:03 UTC

Twenty three hours to restore from a 43 second network disruption.

Takeaway: Recovery is the hard part.
Source

Github.com

https://github.blog/2018-10-30-oct21-post-incident-analysis/

10

Kleppmann Chapter 7

11

Understanding the role of transactions

Identify Challenges in Distributed Transactions

Distinguish Between Isolation Levels**

Recognize Common Anomalies

Appreciate Practical Implications

Learning Goals (Kleppmann Chapter 7)

12

A sequence of operations executed as a single unit of work (“atomic”)
• Ideally it is a minimal set
• Transitions from one consistent state to another consistent state
• Enables recovery in case of handled failures – provide data integrity
• Permits concurrent operations
• Ensures isolation, so intermediate states are not visible

ACID – atomic, consistent, isolated, durable

Transactions

13

Transactions in distributed systems
• Not fate shared

Problem types: network issues (slow, out of order, dropped packets) and node failure

Concurrent access: how do we control this? How do we make it efficient?

Two-phase Commit Protocol:
• Leader (“coordinator”) proposes a set of changes
• Resources prepare their changes
• Leader commits - this is a voting phase
• Quorum = “unanimous consent”

Distributed Transactions

14

Strong Consistency

Eventual Consistency

Causal Consistency

Read-Your-Writes Consistency

Monotonic Read Consistency

Monotonic Write Consistency

Consistency Models

15

Definition:
• All operations on the system appear in a single, agreed-upon order.
• Every read receives the most recent write

Example:
• Linearizable (read-after-write consistency)
• Serializable (isomorphic outcome for concurrent operations)

Strength: simplifies application logic

Weakness: Expensive (high latency/low throughput) in distributed systems

Strong Consistency

16

Definition: Without further updates, all replicas will converge to the same value(s)

Example:
• CRDTs are data structures for implementing eventually consistent systems

Strength:
• High Availability, Good partition tolerance

Weakness:
• Applications may see inconsistent results

Eventual Consistency

17

Definition:
• Causally related operations are visible in the same order
• Concurrent (non-causally related) operations may be seen in different orders

Example:
• Messaging systems

Strength: Stronger than eventual consistency, faster than strong consistency

Weakness: Requires tracking causal relationships between operations

Causal Consistency

18

Definition: Client will see its own writes

Example: Google Docs

Strength: Clients have a self-consistent view (but may see different data for other client
writes)

Weakness: No guarantees about global ordering of operations across clients

Read-your-writes Consistency

19

Definition: client will always read the same or newer value

Example: Online shopping cart

Strength: clients do not see old values after new values

Weakness: no guaranteed global order across values

Monotonic Read Consistency

20

Definition: client writes are always ordered

Example: Online blogging platform

Strength: Provide write ordering guarantee for a client

Weakness: No ordering of writes for other clients

Monotonic Write Consistency

21

Use database snapshots to permit simultaneous transactions

Non-conflicting updates can proceed

Conflicting updates must be resolved (one transaction “aborts” and tries again)

Fast (except in conflict cases)

Snapshot Isolation

22

Dirty Reads: Reading data that is modified but not yet committed

Dirty Writes: Writing data that is modified in another transaction but not yet committed.

Read Skew: data read twice, returns different values (someone else is changing it)

Lost Updates: read/modify/write race to a single value

Write Skew: read/modify/write race to a multiple values

Phantom Reads: First transaction reads a set of objects (like a SELECT statement) and second
transaction changes the set of objects, so first transaction sees different objects on a second
read.

Anomalies and Issues

23

Distributed Transactions: leader requiring 100% quorum

Distributed Consensus: may have a leader, always requires a quorum (but not necessarily
100%)

Can combine these two together:
• Sharded key-value store
• Replicated Databases with SQL transactions

Combining Distributed Transactions and Consensus

24

Spectrum (fast to safe)
• Read Uncommitted
• Read committed
• Repeatable Read
• Serializable
• Snapshot Isolation

Trade-offs:
• Higher isolation = lower performance
• Lower isolation = higher anomaly risk

Isolation Level Trade-offs

25

Real-world challenges:
• Operational complexity
• Latency Considerations
• System Failures
• Scalability
• Changing Requirements

Monitoring, logging, and alerting:
• Anomaly detection
• System behaviour insight
• Issue Alerting
• Performance Tuning
• Auditing & Compliance
• Learning & Adapting

Practical Implications

26

Questions?

	CPSC 416 Distributed Systems
	Logistics
	Teaching Assistants
	Office Hours
	Self-Assessment
	Today’s Failure
	Github.com Outage
	Github.com Outage
	Github.com
	Kleppmann Chapter 7
	Learning Goals (Kleppmann Chapter 7)
	Transactions
	Distributed Transactions
	Consistency Models
	Strong Consistency
	Eventual Consistency
	Causal Consistency
	Read-your-writes Consistency
	Monotonic Read Consistency
	Monotonic Write Consistency
	Snapshot Isolation
	Anomalies and Issues
	Combining Distributed Transactions and Consensus
	Isolation Level Trade-offs
	Practical Implications
	Questions?
	Click to edit Master title style

