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CPS are Ubiquitous, Diverse, and Safety-Critical

Failures can be catastrophic! 
Severe damage to property 
Death or serious injury to humans

3
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Air traffic controlSmart power grids

Small-scale 
systems

Drone fleetsRobotic arms 3D printer

AutomobilesAirplanes

Large-scale 
systems
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CPS are Susceptible to Transient Faults
Harsh environments 

Motors, spark plugs

High power machinery, hard radiation

Electromagnetic interference 

Transient faults or soft errors 
Bit flips in registers, buffers, networks

4
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* Mancuso. “Next-Generation Safety-Critical Systems on Multi-Core Platforms.” PhD Thesis, UIUC (2017)

C“About 5000 vehicles per day will be affected by a soft error,  
with potentially catastrophic consequences.” *
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Transient Faults can Lead to Complex Errors
Transmission: Faults in the network
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Byzantine: Inconsistent broadcasts in distributed systems

Environmentally-induced non-malicious Byzantine errors
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Byzantine: Inconsistent broadcasts in distributed systems

Environmentally-induced non-malicious Byzantine errors
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C
For high reliability targets 

E.g., Pfail < 10-10/hr 
Every type of error must be handled

Driscoll et al. Byzantine Fault 
Tolerance, from Theory to Reality. 

SAFECOMP (2003)
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Example: Dependable CPS for Airplanes
Expensive custom-made fault-tolerant architectures 

Classical example: “The MAFT Architecture for Distributed Fault Tolerance” 
by Kieckhafer et al. (1988)
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Example: Dependable CPS for Airplanes
Expensive custom-made fault-tolerant architectures 

Classical example: “The MAFT Architecture for Distributed Fault Tolerance” 
by Kieckhafer et al. (1988)

Rigorous testing and mathematical analyses

6

Control 
processors

Application 
processors

CP1

AP1

CP6CP2 …

AP6AP2 …

Sensors Actuators

Broadcast network

I/O network

Fault trees Markov 
processes

Timing analyses

C
“Ultra-reliability” 

Quantifiably negligible failure rates

Pfail < 10-10 / hour
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Goal: Make such low-cost consumer CPS more reliable

Not all CPS are Engineered like Airplanes

⤬ Inexpensive but unreliable off-the-shelf hardware

⤬ Open-source unpredictable software

⤬ Inadequate resources

⤬ Safety concerns regarding ML and security

7

Cost

Airplanes

Autonomous 
vehicles

Surgical 
robots Drones, 

robot arms

#Accidents / mission
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Focus: Real-Time Computing and Fault-Tolerance

8

Periodic Activations

sense compute actuate
Next activation / deadline

Time

sense compute actuate
Deadline miss!

Time

Real-time computing

Hardware faults due to 
harsh environment

Fault tolerance
Feedback 

control loops

Compute Sense

Actuate Physical 
world

Network
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No good solutions for CPS-friendly Byzantine Fault Tolerance

9

Byzantine fault 
tolerance

Real-time 
predictability

Modern low-cost 
consumer CPS

Custom hardware ✔ ✔ ✘

Cloud datstores ✔ ✘ ✘

CPS software ✘ ✔ ✔

Achal KVS ✔ ✔ ✔Distributed 
timestamped KVS



KVS Semantics
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Key-Value Store (KVS)

11
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Key-Value Store (KVS)
API 

read(key k) —> value v | key error 
write(key k, value v) —> success | write error
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Key-Value Store (KVS)
API 

read(key k) —> value v | key error 
write(key k, value v) —> success | write error

What are the benefits of a KVS API? 
Simplifies programming

Data sharing

…

11
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Revised API 
read(key k, time t) —> value v | key error | time error 
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How to interpret the time parameter? 
Freshness constraint during read


Return any value v that was written at or later than time t


Publishing time during write

Ensure that value v cannot be read before time t

Ensure that value v can be read at or later than time t 

For simplicity, consider the unique key kunique = (k, t)!
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Revised API 
read(key k, time t) —> value v | key error | time error 
write(key k, time t, value v) —> success | write error | time error

How to interpret the time parameter? 
Freshness constraint during read


Return any value v that was written at or later than time t


Publishing time during write

Ensure that value v cannot be read before time t

Ensure that value v can be read at or later than time t 

For simplicity, consider the unique key kunique = (k, t)!

What are the benefits of a timestamped KVS? 
Data versioning in financial markets

Sensor data in cyber-physical systems

…
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Distributed Timestamped KVS
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Distributed Timestamped KVS
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Node 1

KVS1

Node 2

KVS2

Node 3

KVS3

Node 4

KVS4

Ethernet
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What are the benefits of a distributed KVS? 
Applications may inherently be distributed

Fault tolerance


Crash

Incorrect computation

Network issues


…

Distributed Timestamped KVS



Achal KVS
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Inverted Pendulum: A Prototypical Control Application
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Inverted Pendulum: A Prototypical Control Application

16

Sense !, apply F⃗

3      current = getSensorData()       // get angle encoder value

8

7      force = (P * error) +           // compute force using PID
6      derivative = error - oldError   // compute change in error
5      integral = integral + error     // compute cumulative error
4      error = setPoint - current      // compute absolute error

9      oldError = error

               (D * derivative)  
               (I * integral) +

10
11     actuate(force)                 // apply force on the cart 

2
1   procedure PIDController:           // balance an inverted pendulum
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Inverted Pendulum: A Prototypical Control Application
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Sense !, apply F⃗

Replica 
coordinationEthernet

Nontrivial for control application developers!

3      current = getSensorData()       // get angle encoder value

8

7      force = (P * error) +           // compute force using PID
6      derivative = error - oldError   // compute change in error
5      integral = integral + error     // compute cumulative error
4      error = setPoint - current      // compute absolute error

9      oldError = error

               (D * derivative)  
               (I * integral) +

10
11     actuate(force)                 // apply force on the cart 

2
1   procedure PIDController:           // balance an inverted pendulum
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Time-Aware Key-Value API

17

T1 is a data freshness 
constraint

T2 denotes 
publishing time

9      write(“errorKey”, error, T2)

3      current = getSensorData()

8

7      force = (P * error) +

4      error = read(“setPoint”, T1) - current

               (D * derivative)  
               (I * integral) +

10
11     actuate(force)

2
1   procedure PIDController:

8      T2 = timeOfNextActivation() 

6      derivative = error - read(“errorKey”, T1)
5      integral = read(“integralKey”, T1) + error

10     write(“integralKey”, integral, T2)

2      T1 = timeOfLastActivation()
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Time-Aware Key-Value API

17

T1 is a data freshness 
constraint

T2 denotes 
publishing time

C
Key-value API 
simplifies replica coordination

C
Time parameters help with 
temporal determinism

9      write(“errorKey”, error, T2)

3      current = getSensorData()

8

7      force = (P * error) +

4      error = read(“setPoint”, T1) - current

               (D * derivative)  
               (I * integral) +

10
11     actuate(force)

2
1   procedure PIDController:

8      T2 = timeOfNextActivation() 

6      derivative = error - read(“errorKey”, T1)
5      integral = read(“integralKey”, T1) + error

10     write(“integralKey”, integral, T2)

2      T1 = timeOfLastActivation()
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KVS

C

IvP1 IvP1

R
W

R
W

Time

Assume a single core in use
R = read, W = write, C = coordination
IvP = Inverted pendulum control application, KVS = Achal’s backend

Schedule on node 1

IvP1 is activated again 
after its time period

IvP1 reads 
values from 

the KVS IvP1 writes values 
back to the KVS

IvP1 denotes the inverted 
pendulum procedure 

KVS coordinates among 
replicas between IvP1 iterations 
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Building Blocks
Clock synchronization 

Make sense of absolute publishing times across distributed nodes

EIGByz*# for Byzantine fault tolerance 
Synchronous → Exploits clock synchronization for better performance

Leaderless → Higher reliability!

Interactive consistency → Useful for noisy sensor values

Simple algorithm → Can be easily parameterized in #nodes, #rounds

Exponential Information Gathering trees → Easily flattened for fast reads and writes

21

# Borran and Schiper. “A Leader-Free Byzantine Consensus Algorithm.” ICDCN (2010)
* Pease, Shostak, and Lamport. “Reaching agreement in the presence of faults.” J. ACM (1980)
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Optimize EIGByz’s implementation for predictability + Empirical profiling

Time period? 
Small enough so that publishing times are satisfiable

… but not at the cost of poor CPU utilization!

Partitioned scheduling + uniprocessor response-time analysis

22

CAchal is tuned as a function of both the workload and the platform!



Evaluation
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How does Achal compare against well-known datastores?

Platform: Four Raspberry Pi 4 Model B + Ethernet


Baselines:


Workload

IvPSim: Periodic task simulating inverted pendulum control

Each task reads/writes 20 floats

Coordinate data written by IvPSim replicas every iteration

24
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How does Achal compare against well-known KVS?

25

C = 1 core C = 3 cores

I = 1 IvPSim task / core I = 4 IvPSim tasks / core I = 1 IvPSim task / core I = 4 IvPSim tasks / core

Decreasing Period → Decreasing Period → Decreasing Period → Decreasing Period →

Su
cc

es
s 

%

20 configurations

Metrics 
Read: % of iterations where all reads were successful

Write: … 

Higher 
is better!

Log 
scale
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Achal’s success 
rate is 100%
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How does Achal compare against well-known KVS?

25

Achal (writes)Achal (reads) Redis (writes)Redis (reads) etcd (writes)etcd (reads)

Su
cc

es
s 

%

Higher 
is better!

Log 
scale

Achal’s success 
rate is 100%
etcd almost always 
underperforms Redis underperforms when the workload is increased

CAchal successfully managed an 
automotive workload 10x-100x IvPSim
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How does Achal compare against well-known KVS?

25

Achal (writes)Achal (reads) Redis (writes)Redis (reads)

Su
cc

es
s 

%

Higher 
is better!

Log 
scale

I = 4 IvPSim tasks / core I = 4 IvPSim tasks / core

Achal’s success 
rate is 100%

Redis underperforms when the workload is increased



Summary
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Key Takeaways

Interplay between timing and fault tolerance is nontrivial 
Lots of interesting system design problems to be explored in the space of distributed real-time 
systems in the CPS domain …

Need for a priori timing and reliability analyses makes the system design 
problem even more challenging! 

How often does Achal fail? Is Pfail < 10-10/hr?

Can we add yet another control task without affecting the system timeliness?

More details about Achal in the paper … 
“Interactive Consistency meets Distributed Real-Time Systems, Again!” at RTSS 2022

27



CPS Research 
Developing foundations needed to engineer complex CPS


… which require “dependable, high-confidence, or provable behaviors”*

28* https://beta.nsf.gov/funding/opportunities/cyber-physical-systems-cps

⒈ Runtime mechanisms
⒉ Analysis techniques
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Contact 
• Name: Arpan B. Gujarati 
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