
Arpan Gujarati | University of British Columbia, Vancouver (Canada)

Building Fault-Tolerant
Distributed Real-Time Systems

© Arpan Gujarati

Cyber-Physical Systems (CPS)
Tight and seamless integration

Computation

Networking

Actuation and control

Sensing of the physical world

Feedback 
control loops

2

Compute Sense

Actuate Physical
world

Network

© Arpan Gujarati

Cyber-Physical Systems (CPS)
Tight and seamless integration

Computation

Networking

Actuation and control

Sensing of the physical world

Feedback 
control loops

2

Compute Sense

Actuate Physical
world

Network

© Arpan Gujarati

CPS are Ubiquitous, Diverse, and Safety-Critical

3

Integration of diverse systems

Air traffic controlSmart power grids

Small-scale
systems

Drone fleetsRobotic arms 3D printer

AutomobilesAirplanes

Large-scale
systems

© Arpan Gujarati

CPS are Ubiquitous, Diverse, and Safety-Critical

Failures can be catastrophic!
Severe damage to property
Death or serious injury to humans

3

Integration of diverse systems

Air traffic controlSmart power grids

Small-scale
systems

Drone fleetsRobotic arms 3D printer

AutomobilesAirplanes

Large-scale
systems

© Arpan Gujarati

CPS are Susceptible to Transient Faults
Harsh environments

Motors, spark plugs

High power machinery, hard radiation

Electromagnetic interference

Transient faults or soft errors
Bit flips in registers, buffers, networks

4

© Arpan Gujarati

CPS are Susceptible to Transient Faults
Harsh environments

Motors, spark plugs

High power machinery, hard radiation

Electromagnetic interference

Transient faults or soft errors
Bit flips in registers, buffers, networks

4

* Mancuso. “Next-Generation Safety-Critical Systems on Multi-Core Platforms.” PhD Thesis, UIUC (2017)

C“About 5000 vehicles per day will be affected by a soft error,  
with potentially catastrophic consequences.” *

© Arpan Gujarati

Transient Faults can Lead to Complex Errors
Transmission: Faults in the network

Omission: Fault-induced kernel panics, hangs

Incorrect computation: Faults in memory buffers

Byzantine: Inconsistent broadcasts in distributed systems

Environmentally-induced non-malicious Byzantine errors

5

© Arpan Gujarati

Transient Faults can Lead to Complex Errors
Transmission: Faults in the network

Omission: Fault-induced kernel panics, hangs

Incorrect computation: Faults in memory buffers

Byzantine: Inconsistent broadcasts in distributed systems

Environmentally-induced non-malicious Byzantine errors

5

Driscoll et al. Byzantine Fault
Tolerance, from Theory to Reality.

SAFECOMP (2003)

© Arpan Gujarati

Transient Faults can Lead to Complex Errors
Transmission: Faults in the network

Omission: Fault-induced kernel panics, hangs

Incorrect computation: Faults in memory buffers

Byzantine: Inconsistent broadcasts in distributed systems

Environmentally-induced non-malicious Byzantine errors

5

C
For high reliability targets

E.g., Pfail < 10-10/hr
Every type of error must be handled

Driscoll et al. Byzantine Fault
Tolerance, from Theory to Reality.

SAFECOMP (2003)

© Arpan Gujarati

Example: Dependable CPS for Airplanes
Expensive custom-made fault-tolerant architectures

Classical example: “The MAFT Architecture for Distributed Fault Tolerance” 
by Kieckhafer et al. (1988)

6

Control
processors

Application
processors

CP1

AP1

CP6CP2 …

AP6AP2 …

Sensors Actuators

Broadcast network

I/O network

© Arpan Gujarati

Example: Dependable CPS for Airplanes
Expensive custom-made fault-tolerant architectures

Classical example: “The MAFT Architecture for Distributed Fault Tolerance” 
by Kieckhafer et al. (1988)

Rigorous testing and mathematical analyses

6

Control
processors

Application
processors

CP1

AP1

CP6CP2 …

AP6AP2 …

Sensors Actuators

Broadcast network

I/O network

Fault trees Markov
processes

Timing analyses

C
“Ultra-reliability”

Quantifiably negligible failure rates

Pfail < 10-10 / hour

© Arpan Gujarati

Goal: Make such low-cost consumer CPS more reliable

Not all CPS are Engineered like Airplanes

⤬ Inexpensive but unreliable off-the-shelf hardware

⤬ Open-source unpredictable software

⤬ Inadequate resources

⤬ Safety concerns regarding ML and security

7

Cost

Airplanes

Autonomous
vehicles

Surgical
robots Drones,

robot arms

#Accidents / mission

© Arpan Gujarati

Focus: Real-Time Computing and Fault-Tolerance

8

Periodic Activations

sense compute actuate
Next activation / deadline

Time

sense compute actuate
Deadline miss!

Time

Real-time computing

Hardware faults due to
harsh environment

Fault tolerance
Feedback

control loops

Compute Sense

Actuate Physical
world

Network

© Arpan Gujarati

No good solutions for CPS-friendly Byzantine Fault Tolerance

9

© Arpan Gujarati

No good solutions for CPS-friendly Byzantine Fault Tolerance

9

Byzantine fault
tolerance

Real-time
predictability

Modern low-cost
consumer CPS

Custom hardware ✔ ✔ ✘

© Arpan Gujarati

No good solutions for CPS-friendly Byzantine Fault Tolerance

9

Byzantine fault
tolerance

Real-time
predictability

Modern low-cost
consumer CPS

Custom hardware ✔ ✔ ✘

Cloud datstores ✔ ✘ ✘

© Arpan Gujarati

No good solutions for CPS-friendly Byzantine Fault Tolerance

9

Byzantine fault
tolerance

Real-time
predictability

Modern low-cost
consumer CPS

Custom hardware ✔ ✔ ✘

Cloud datstores ✔ ✘ ✘

CPS software ✘ ✔ ✔

© Arpan Gujarati

No good solutions for CPS-friendly Byzantine Fault Tolerance

9

Byzantine fault
tolerance

Real-time
predictability

Modern low-cost
consumer CPS

Custom hardware ✔ ✔ ✘

Cloud datstores ✔ ✘ ✘

CPS software ✘ ✔ ✔

Achal KVS ✔ ✔ ✔Distributed
timestamped KVS

KVS Semantics

© Arpan Gujarati

Key-Value Store (KVS)

11

© Arpan Gujarati

Key-Value Store (KVS)
API

read(key k) —> value v | key error
write(key k, value v) —> success | write error

11

© Arpan Gujarati

Key-Value Store (KVS)
API

read(key k) —> value v | key error
write(key k, value v) —> success | write error

What are the benefits of a KVS API?
Simplifies programming

Data sharing

…

11

© Arpan Gujarati

Timestamped KVS

12

© Arpan Gujarati

Timestamped KVS

12

Revised API
read(key k, time t) —> value v | key error | time error
write(key k, time t, value v) —> success | write error | time error

© Arpan Gujarati

Timestamped KVS

12

Revised API
read(key k, time t) —> value v | key error | time error
write(key k, time t, value v) —> success | write error | time error

How to interpret the time parameter?
Freshness constraint during read

Return any value v that was written at or later than time t

Publishing time during write

Ensure that value v cannot be read before time t

Ensure that value v can be read at or later than time t

For simplicity, consider the unique key kunique = (k, t)!

© Arpan Gujarati

Timestamped KVS

12

Revised API
read(key k, time t) —> value v | key error | time error
write(key k, time t, value v) —> success | write error | time error

How to interpret the time parameter?
Freshness constraint during read

Return any value v that was written at or later than time t

Publishing time during write

Ensure that value v cannot be read before time t

Ensure that value v can be read at or later than time t

For simplicity, consider the unique key kunique = (k, t)!

What are the benefits of a timestamped KVS?
Data versioning in financial markets

Sensor data in cyber-physical systems

…

© Arpan Gujarati

Distributed Timestamped KVS

13

© Arpan Gujarati

Distributed Timestamped KVS

13

Node 1

KVS1

Node 2

KVS2

Node 3

KVS3

Node 4

KVS4

Ethernet

© Arpan Gujarati 14

What are the benefits of a distributed KVS?
Applications may inherently be distributed

Fault tolerance

Crash

Incorrect computation

Network issues

…

Distributed Timestamped KVS

Achal KVS

© Arpan Gujarati

Inverted Pendulum: A Prototypical Control Application

16

© Arpan Gujarati

Inverted Pendulum: A Prototypical Control Application

16

Sense !, apply F⃗

3 current = getSensorData() // get angle encoder value

8

7 force = (P * error) + // compute force using PID
6 derivative = error - oldError // compute change in error
5 integral = integral + error // compute cumulative error
4 error = setPoint - current // compute absolute error

9 oldError = error

 (D * derivative)
 (I * integral) +

10
11 actuate(force) // apply force on the cart

2
1 procedure PIDController: // balance an inverted pendulum

© Arpan Gujarati

Inverted Pendulum: A Prototypical Control Application

16

Sense !, apply F⃗

Replica
coordinationEthernet

Nontrivial for control application developers!

3 current = getSensorData() // get angle encoder value

8

7 force = (P * error) + // compute force using PID
6 derivative = error - oldError // compute change in error
5 integral = integral + error // compute cumulative error
4 error = setPoint - current // compute absolute error

9 oldError = error

 (D * derivative)
 (I * integral) +

10
11 actuate(force) // apply force on the cart

2
1 procedure PIDController: // balance an inverted pendulum

© Arpan Gujarati

Time-Aware Key-Value API

17

T1 is a data freshness
constraint

T2 denotes
publishing time

9 write(“errorKey”, error, T2)

3 current = getSensorData()

8

7 force = (P * error) +

4 error = read(“setPoint”, T1) - current

 (D * derivative)
 (I * integral) +

10
11 actuate(force)

2
1 procedure PIDController:

8 T2 = timeOfNextActivation()

6 derivative = error - read(“errorKey”, T1)
5 integral = read(“integralKey”, T1) + error

10 write(“integralKey”, integral, T2)

2 T1 = timeOfLastActivation()

© Arpan Gujarati

Time-Aware Key-Value API

17

T1 is a data freshness
constraint

T2 denotes
publishing time

C
Key-value API 
simplifies replica coordination

C
Time parameters help with
temporal determinism

9 write(“errorKey”, error, T2)

3 current = getSensorData()

8

7 force = (P * error) +

4 error = read(“setPoint”, T1) - current

 (D * derivative)
 (I * integral) +

10
11 actuate(force)

2
1 procedure PIDController:

8 T2 = timeOfNextActivation()

6 derivative = error - read(“errorKey”, T1)
5 integral = read(“integralKey”, T1) + error

10 write(“integralKey”, integral, T2)

2 T1 = timeOfLastActivation()

18

KVS

C

IvP1 IvP1

R
W

R
W

Time

Assume a single core in use
R = read, W = write, C = coordination
IvP = Inverted pendulum control application, KVS = Achal’s backend

Schedule on node 1

IvP1 is activated again
after its time period

IvP1 reads
values from

the KVS IvP1 writes values
back to the KVS

IvP1 denotes the inverted
pendulum procedure

KVS coordinates among
replicas between IvP1 iterations

19

IvP2 IvP2

R
W

R
W

IvP2

W

IvP2

R
W

R

KVS

C

IvP1 IvP1

R
W

R
W

Time

KVS

C

KVS

C

Assume a single core in use
R = read, W = write, C = coordination
IvP = Inverted pendulum control application, KVS = Achal’s backend

Schedule on node 1

20

IvP2 IvP2

R
W

R
W

IvP2

W

IvP2

R
W

R

KVS

C

IvP1 IvP1

R
W

R
W

Time

Assume a single core in use
R = read, W = write, C = coordination
IvP = Inverted pendulum control application, KVS = Achal’s backend

KVS

C

KVS

C

I3

R W

I3

R W

I3

R
W

I3

R
W

I3

R
W

I3

R
W

I3

R
W

I3

R
W

I3

W
R

KVS

C

KVS

C

KVS

C

KVS

C

KVS

C

Schedule on node 1

© Arpan Gujarati

Building Blocks

21

© Arpan Gujarati

Building Blocks
Clock synchronization

Make sense of absolute publishing times across distributed nodes

21

© Arpan Gujarati

Building Blocks
Clock synchronization

Make sense of absolute publishing times across distributed nodes

EIGByz*# for Byzantine fault tolerance
Synchronous → Exploits clock synchronization for better performance

Leaderless → Higher reliability!

Interactive consistency → Useful for noisy sensor values

Simple algorithm → Can be easily parameterized in #nodes, #rounds

Exponential Information Gathering trees → Easily flattened for fast reads and writes

21

Borran and Schiper. “A Leader-Free Byzantine Consensus Algorithm.” ICDCN (2010)
* Pease, Shostak, and Lamport. “Reaching agreement in the presence of faults.” J. ACM (1980)

© Arpan Gujarati

Design Principle: Make the KVS Strictly Periodic

22

© Arpan Gujarati

Design Principle: Make the KVS Strictly Periodic

Worst-case execution time?
Optimize EIGByz’s implementation for predictability + Empirical profiling

22

© Arpan Gujarati

Design Principle: Make the KVS Strictly Periodic

Worst-case execution time?
Optimize EIGByz’s implementation for predictability + Empirical profiling

Time period?
Small enough so that publishing times are satisfiable

… but not at the cost of poor CPU utilization!

Partitioned scheduling + uniprocessor response-time analysis

22

© Arpan Gujarati

Design Principle: Make the KVS Strictly Periodic

Worst-case execution time?
Optimize EIGByz’s implementation for predictability + Empirical profiling

Time period?
Small enough so that publishing times are satisfiable

… but not at the cost of poor CPU utilization!

Partitioned scheduling + uniprocessor response-time analysis

22

CAchal is tuned as a function of both the workload and the platform!

Evaluation

© Arpan Gujarati

How does Achal compare against well-known datastores?

Platform: Four Raspberry Pi 4 Model B + Ethernet

Baselines:

Workload

IvPSim: Periodic task simulating inverted pendulum control

Each task reads/writes 20 floats

Coordinate data written by IvPSim replicas every iteration

24

© Arpan Gujarati

How does Achal compare against well-known KVS?

25

20 configurations

© Arpan Gujarati

How does Achal compare against well-known KVS?

25

C = 1 core C = 3 cores

20 configurations

© Arpan Gujarati

How does Achal compare against well-known KVS?

25

C = 1 core C = 3 cores

I = 1 IvPSim task / core I = 4 IvPSim tasks / core I = 1 IvPSim task / core I = 4 IvPSim tasks / core

20 configurations

© Arpan Gujarati

How does Achal compare against well-known KVS?

25

C = 1 core C = 3 cores

I = 1 IvPSim task / core I = 4 IvPSim tasks / core I = 1 IvPSim task / core I = 4 IvPSim tasks / core

Decreasing Period → Decreasing Period → Decreasing Period → Decreasing Period →

20 configurations

© Arpan Gujarati

How does Achal compare against well-known KVS?

25

C = 1 core C = 3 cores

I = 1 IvPSim task / core I = 4 IvPSim tasks / core I = 1 IvPSim task / core I = 4 IvPSim tasks / core

Decreasing Period → Decreasing Period → Decreasing Period → Decreasing Period →

Su
cc

es
s

%

20 configurations

Metrics
Read: % of iterations where all reads were successful

Write: …

Higher
is better!

Log
scale

© Arpan Gujarati

How does Achal compare against well-known KVS?

25

Achal (writes)Achal (reads)

Su
cc

es
s

%

Higher
is better!

Log
scale

Achal’s success
rate is 100%

© Arpan Gujarati

How does Achal compare against well-known KVS?

25

Achal (writes)Achal (reads) Redis (writes)Redis (reads) etcd (writes)etcd (reads)

Su
cc

es
s

%

Higher
is better!

Log
scale

Achal’s success
rate is 100%
etcd almost always
underperforms Redis underperforms when the workload is increased

© Arpan Gujarati

How does Achal compare against well-known KVS?

25

Achal (writes)Achal (reads) Redis (writes)Redis (reads) etcd (writes)etcd (reads)

Su
cc

es
s

%

Higher
is better!

Log
scale

Achal’s success
rate is 100%
etcd almost always
underperforms Redis underperforms when the workload is increased

CAchal successfully managed an
automotive workload 10x-100x IvPSim

© Arpan Gujarati

How does Achal compare against well-known KVS?

25

Achal (writes)Achal (reads) Redis (writes)Redis (reads)

Su
cc

es
s

%

Higher
is better!

Log
scale

I = 4 IvPSim tasks / core I = 4 IvPSim tasks / core

Achal’s success
rate is 100%

Redis underperforms when the workload is increased

Summary

© Arpan Gujarati

Key Takeaways

27

© Arpan Gujarati

Key Takeaways

Interplay between timing and fault tolerance is nontrivial
Lots of interesting system design problems to be explored in the space of distributed real-time
systems in the CPS domain …

27

© Arpan Gujarati

Key Takeaways

Interplay between timing and fault tolerance is nontrivial
Lots of interesting system design problems to be explored in the space of distributed real-time
systems in the CPS domain …

Need for a priori timing and reliability analyses makes the system design
problem even more challenging!

How often does Achal fail? Is Pfail < 10-10/hr?

Can we add yet another control task without affecting the system timeliness?

27

© Arpan Gujarati

Key Takeaways

Interplay between timing and fault tolerance is nontrivial
Lots of interesting system design problems to be explored in the space of distributed real-time
systems in the CPS domain …

Need for a priori timing and reliability analyses makes the system design
problem even more challenging!

How often does Achal fail? Is Pfail < 10-10/hr?

Can we add yet another control task without affecting the system timeliness?

More details about Achal in the paper …
“Interactive Consistency meets Distributed Real-Time Systems, Again!” at RTSS 2022

27

CPS Research
Developing foundations needed to engineer complex CPS

… which require “dependable, high-confidence, or provable behaviors”*

28* https://beta.nsf.gov/funding/opportunities/cyber-physical-systems-cps

⒈ Runtime mechanisms
⒉ Analysis techniques

CPS Research
Developing foundations needed to engineer complex CPS

… which require “dependable, high-confidence, or provable behaviors”*

28* https://beta.nsf.gov/funding/opportunities/cyber-physical-systems-cps

⒈ Runtime mechanisms
⒉ Analysis techniques

Contact
• Name: Arpan B. Gujarati
• Email: arpanbg@cs.ubc.ca
• Web: https://arpangujarati.github.io/

mailto:arpanbg@cs.ubc.ca
https://arpangujarati.github.io/

