
Winter 2022 Term 2 (April 4, 2023)

Tony Mason (fsgeek@cs.ubc.ca), Lecturer

CPSC 416 Distributed 
Systems
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Logistics
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Project 4 Released. Late Due: April 13, 2023. Grades for on-time have been returned.

Project 5 Released Due: April 13, 2023.  No extensions.

All project work is due April 13, 2023.  Late projects are scaled to 75% of the on-time max.

Final Exam: April 20, 2023, DMP 310, 08:30-11:00.  Format TBA.

Deadlines
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Alternate Path 1 & 2: Review in progress
• Piazza private threads need TLC

• Weekly updates due each Monday @ 23:59 PT
• Final reports due no later than Thursday April 13, 2023 @ 23:59 PT

Instructor Office Hours:
• Zoom Office Hours (Tuesday) @ 13:00-14:00
• Discord (Casual) Office Hours (Thursday) @ 14:00-15:00

TA Office Hours:
• Eric: Friday 9-11 am (in-person and Zoom)
• Japraj: Wednesday 3-5 pm (Zoom)
• Yennis: Thursday 2-4 (Zoom), Friday 2-4 (in-person)

Deadlines
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Required:
The Byzantine Generals Problem (Lamport/Shostak/Pease, TOPLOS 1982)
Practical Byzantine Fault Tolerance (Castro/Liskov, OSDI 1999)

Recommended:
Making Reads in BFT State Machine Replication Fast, Linearizable, and Live (2021)

Readings

https://www.microsoft.com/en-us/research/uploads/prod/2016/12/The-Byzantine-Generals-Problem.pdf
https://pmg.csail.mit.edu/papers/osdi99.pdf
https://arxiv.org/pdf/2107.11144.pdf
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Questions about the class?

Questions about the previous lecture?

Funny stories to share?

Questions?
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Today’s Failure
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Date: June 30, 2012
Time: 23:60 UTC
Source: Wired

International Telecommunications Union (ITU) added one second to the clock (a leap second)

Impact: Reddit, LinkedIn, Quantas Airlines Reservations failed (plus many others)

Bug: Linux kernel

Root cause: bug in the clock logic caused “thundering herd” (waking all threads up) and the 
massive CPU load caused cascading failures.

Linux Kernel Bug

https://www.wired.com/2012/07/leap-second-glitch-explained/
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Lesson Goals
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Byzantine Systems

Practical Byzantine Fault Tolerance

Blockchain

Byzantine Fault Tolerance
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Consensus with Byzantine failures

Practical Byzantine Fault Tolerance (pBFT)

Blockchain: Byzantine proof distributed consensus

Introduction: Byzantine Fault Tolerance
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Model change: Nodes continue to participate after failure
• Could be malicious
• Incorrect behaviour: incorrect messages

The Byzantine Generals Problem

Byzantine Failures

https://www.microsoft.com/en-us/research/uploads/prod/2016/12/The-Byzantine-Generals-Problem.pdf
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Byzantine Generals Problem
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Byzantine Generals Problem
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Achieve consensus
• Safety 
• Liveness
• Validity

Tolerate f failures

Asynchronous network

Allow Byzantine behaviour

Goals of Byzantine Fault Tolerance
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Messages
• Cryptographic signatures

Malicious participants
• Increase number of total participants
• For f faults: need 3f + 1 nodes

Corrupt Leader
• Add checks among participants

Liveness: bounded delay (“eventual synchrony”)

How?
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Practical Byzantine Fault Tolerance (Castro & Liskov, OSDI 1999)

High performance
• Tolerates f failures with 3f + 1 nodes
• 97% as fast with replication (using NFS)

Practical Byzantine Fault Tolerance

https://dl.acm.org/doi/10.5555/296806.296824
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Replicated Service
• 3f + 1 replicated nodes (for up to f failures)
• Primary + replicas

Uses a view defined by current primary

Replicas are replicated state machines
• Consistent
• State includes: service state, message log, current view

Communications integrity
• Digests
• Public keys

pBFT: System Model
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N nodes

Permit f faults (including Byzantine)

Requires quorum among N-f nodes

N > 3f (e.g., 3f + 1)

Why we need 3f + 1
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pBFT: Request Processing
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pBFT: 3PC protocol
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Leader multicasts pre-prepare request with the 
message to the backups.

Leader records message in its log

Replicas accept pre-prepare if:
• Signature 𝜎𝜎 and digest 𝜔𝜔 check
• View 𝜈𝜈 is correct
• Sequence number 𝜇𝜇 is new
• 𝜇𝜇 such that 𝜌𝜌 < 𝜇𝜇 < Ρ.  These are the 

watermarks

pBFT: Pre-Prepare Phase
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At least one replica multicasts a prepare
message (after accepting pre-prepare)

Waits for consensus  responses
• prepared messages
• Log contains pre-prepare and 2f 

matching prepare
• Same view
• Same sequence number
• Same digest

pBFT: Prepare Phase
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Replica multicasts commit message (after 
prepare)

Waits for responses
• Committed

Commit when
• Prepared is true
• 2f + 1 matching committed messages 

seen (including replica)

Can reply to client once commited

pBFT: Commit Phase
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Garbage collection (log)

View changes

Liveness

Performance optimizations (message elimination)

Sample Byzantine-fault tolerant service (replicated NFS)

pBFT: More Details (in Paper)
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Blockchain
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Bitcoin: A Peer-to-Peer Electronic Cash System (Nakamoto, 2008)

Byzantine system: the “double spend”

Basic unit is the transaction block:
• Balanced set of operations
• Public
• Easily verified

Implements a distributed timestamp service

Bitcoin

https://bitcoin.org/bitcoin.pdf
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A cryptographic hash is computed for each block of information.  

New hash: previous block hash + hash of current block
• Creates the chain
• Makes it difficult to “rewrite history”

Blockchain: the chain



29

Accounting 101
• Inflows = Outflows

Blockchain: Ledger
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Combine hash with a nonce
• Nonce is a value chosen so the hash has a specific number of zero bits (the 

difficulty)
• Only way to find a nonce is to compute the hash

Blockchain: Proof of Work
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Blockchain: Garbage Collection
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Blockchain vs pBFT
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Byzantine consensus for timestamped chained ledger blocks
• Not explicit in Nakamoto’s paper

Limits to participation
• Miners: must be willing to expend energy for Proof-of-work
• Cryptography

Incentivize good behavior
• Most participants want the product
• Economic factors discourage dishonesty (miners get rewards)

Blockchain versus Bitcoin
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Algorand: Scaling Byzantine Agreements for Cryptocurrencies
(Gilad/Hemo/Micali/Vlachos/Zeldovich, SOSP 2017)

Algorand: the Defi company

Ethereum Proof-of-Stake
• Lower energy consumption
• Consensus based upon ownership (ergo “weighted quorum”)
• Non-fungible tokens (NFT)

A Blockchain-based Land Title Management System for Bangladesh

Additional Readings

https://dl.acm.org/doi/10.1145/3132747.3132757
https://developer.algorand.org/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/nft/
https://www.sciencedirect.com/science/article/pii/S1319157820304912
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Lesson Review
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Byzantine Systems

Practical Byzantine Fault Tolerance

Blockchain

Byzantine Fault Tolerance
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Questions?
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