
Winter 2022 Term 2 (March 23, 2023)

Tony Mason (fsgeek@cs.ubc.ca), Lecturer

CPSC 416 Distributed
Systems

2

Logistics

3

Project 4 Released. Late Due: April 13, 2023.

Project 5 Released Due: April 13, 2023. No extensions.

All project work is due April 13, 2023. Late projects are scaled to 75% of the on-time max.

Final Exam: April 20, 2023, DMP 310, 08:30-11:00. Format TBA.

Deadlines

4

Alternate Path 1 & 2: Review in progress
• Piazza private threads need TLC

• Weekly updates due each Monday @ 23:59 PT
• Final reports due no later than Thursday April 13, 2023 @ 23:59 PT
• Optional 10 min presentation April 13, 2023, up to 10 minutes.

Instructor Office Hours:
• Zoom Office Hours (Tuesday) @ 13:00-14:00
• Discord (Casual) Office Hours (Thursday) @ 14:00-15:00

TA Office Hours:
• Eric: Friday 9-11 am (in-person and Zoom)
• Japraj: Wednesday 3-5 pm (Zoom)
• Yennis: Thursday 2-4 (Zoom), Friday 2-4 (in-person)

Deadlines

5

Required:

Recommended:

Readings

6

Questions about the class?

Questions about the previous lecture?

Funny stories to share?

Questions?

7

Today’s Failure

8

Event: October 21, 2018 22:52 UTC

Planned outage: goal is to replace a failing 100Gb/s optical network device.

“Connectivity between these two locations was restored in 43 seconds, but this brief
outage triggered a chain of events that led to 24 hours and 11 minutes of service
degradation.”

Infrastruture: MySQL with Orchestrator to manage cluster topologies.

Note: Orchestrator uses Raft for consensus.

Github.com Outage

9

Network goes out: Raft starts “leadership deselection”

Note: optical link was between two Eastern US sites.

West coast data center and East coast Orchestrator form quorum

Fail over to clusters in West coast data center: write operations begin working.

Network fixed: traffic starts going to West coast site

Note: East coast had some updates that had not propagated to west coast yet.
This blocked primary returning to East coast.

Github.com Outage

10

Things come unraveled due to increased latency, unexpected topologies.
Decision to degrade service rather than compromise consistency.

Start restoring databases from backup.

Restoration was started October 22, 2018 00:05 UTC
Restoration completed and service restored October 22, 2018 23:03 UTC

Twenty three hours to restore from a 43 second network disruption.

Takeaway: Recovery is the hard part.
Source

Github.com

https://github.blog/2018-10-30-oct21-post-incident-analysis/

11

Lesson Goals

12

MapReduce

Spark (and RDDs)

Distributed Data Analytics

13

Data Parallel (Divide & Conquer):
• Divide Data across nodes
• Load balancing, decomposition
• Messaging for data dependencies
• Application usage

Common Techniques

14

Pipelining
• Divide work into smaller tasks

• Small number of tasks per
node

• Faster than generality
• Data streamed in chunks through

task pipeline
• Increases throughput

Common Techniques

15

Model Parallelism
• Divide state across nodes
• Less processing per node
• Input passed to all nodes
• Output combined from all

nodes
• Must handle dependencies

Common Techniques

16

Model Parallelism
• Divide state across nodes
• Less processing per node
• Input passed to all nodes
• Output combined from all

nodes
• Must handle dependencies

Common Techniques

17

MapReduce: Simplified Data Processing on Large Clusters, J. Dean, OSDI 2004.

• Hadoop MapReduce
• AWS infrastructure

MapReduce

http://nil.csail.mit.edu/6.824/2018/papers/mapreduce.pdf

18

Input:
• Set of key-value pair records

Map function
• Input: unique key-value pair
• Output: a new key-value pair

Reduce function:
• Input: output from map function
• Output: final result

Master: orchestrates workers, I/O, failure
management

MapReduce

19

Wordcount example:
• Input: Collection of files

Map function:
• Input: File, key=filename, content=value
• Output: file with key=word, value=list of

counts
Reduce function:

• Input: file with key=word, value=list of
counts

• Output: list of words with total counts
Other examples:

• URL access frequency, page rank,
inverted word index

MapReduce

20

Combining Techniques:
• Data parallel: chunks to mappers
• Pipelining: mapper to reducer
• Model parallelism: reducers process

parts of key space, combine

Dataflow model means flow of data determines
execution

MapReduce

21

Master data structures:
• Tracking

Locality:
• Scheduling, placement of intermediate data

Task granularity:
• Finer granularity: more flexibility, management operation execution time
• Coarse granularity: lower management overhead

Fault tolerance:
• Master: standby replication
• Worker: detect failures or stragglers and re-execute

Failure semantics:
• Importance of Consistency and complete results

Backup tasks:
• Inevitable failures: speculative task backup

Map Reduce: Design Decisions

22

Failure inevitable: cannot re-execute entire operation
Fault-tolerant mechanism: requires intermediate data availability

• Serialiation to/from persistent storage
• Remote access and data movement

Data amplification:
• Intermediate data may be much larger than input
• Executions are iterative
• Storage level replication

System scale: cannot assume best-in-class storage devices

Map Reduce: Limitations

23

Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing

Faster analytics (10x) versus Hadoop
• Workloads: graph, streaming, SQL, Machine Learning, etc.
• Languages: Java, Python, Scala, etc.
• Platforms: AWS, Kubernetes, etc.

Apache Spark

Spark

https://cs.stanford.edu/%7Ematei/papers/2012/nsdi_spark.pdf
https://spark.apache.org/

24

Allow in-memory data sharing
• Fast DRAM versus slow

hard disk
• No serialization cost

Fault-tolerant

Spark: Goals

25

Immutable partitioned record collection

Created using transformations
• Operations on data in stable

storage
• Map/join/filter on other RDDs

Used via actions (count, collect, save)
RDDs map back to source

• Compute partitions from data in
stable storage

Users control persistence and partitioning

Resilient Distributed Datasets: Introduction

26

Console log mining example

Resilient Distributed Datasets: Example

27

Resilient Distributed Datasets: Transformations & Actions

28

Program defines dependencies

Actions:
• Directed acyclic graph (DAG)
• Minimize dependencies
• Optimize parallelism
• Limit I/O contention

Tasks assigned based on data locality

Resilient Distributed Datasets: Scheduling Action Execution

29

Data in memory?
• Distributed shared memory like

runtime
• Log updates
• Persist lineage

Log coarse grained operations applied to all
items in RDD elements

Spark: Goals

30

Data in memory?
• Distributed shared memory like

runtime
• Log updates
• Persist lineage

Log coarse grained operations applied to all
items in RDD elements

Spark: Goals

31

Up to 20x better than Hadoop
• Iterative
• Machine learning
• Graph applications

Analytics report generation 40x

Rapid failure recovery

1TB dataset queries with 5-7 second
latencies

Spark: Evaluation

32

Lesson Review

33

Systems for scalable data processing

MapReduce

Spark

Distributed Data Analytics

34

Questions?

	CPSC 416 Distributed Systems
	Logistics
	Deadlines
	Deadlines
	Readings	
	Questions?
	Today’s Failure
	Github.com Outage
	Github.com Outage
	Github.com
	Lesson Goals
	Distributed Data Analytics
	Common Techniques
	Common Techniques
	Common Techniques
	Common Techniques
	MapReduce
	MapReduce
	MapReduce
	MapReduce
	Map Reduce: Design Decisions
	Map Reduce: Limitations
	Spark
	Spark: Goals
	Resilient Distributed Datasets: Introduction
	Resilient Distributed Datasets: Example
	Resilient Distributed Datasets: Transformations & Actions
	Resilient Distributed Datasets: Scheduling Action Execution
	Spark: Goals
	Spark: Goals
	Spark: Evaluation
	Lesson Review
	Distributed Data Analytics
	Questions?
	Click to edit Master title style

