
Winter 2022 Term 2 (March 23, 2023)

Tony Mason (fsgeek@cs.ubc.ca), Lecturer

CPSC 416 Distributed 
Systems
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Logistics
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Project 4 Released. Late Due: April 13, 2023.

Project 5 Released Due: April 13, 2023.  No extensions.

All project work is due April 13, 2023.  Late projects are scaled to 75% of the on-time max.

Final Exam: April 20, 2023, DMP 310, 08:30-11:00.  Format TBA.

Deadlines
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Alternate Path 1 & 2: Review in progress
• Piazza private threads need TLC

• Weekly updates due each Monday @ 23:59 PT
• Final reports due no later than Thursday April 13, 2023 @ 23:59 PT
• Optional 10 min presentation April 13, 2023, up to 10 minutes.

Instructor Office Hours:
• Zoom Office Hours (Tuesday) @ 13:00-14:00
• Discord (Casual) Office Hours (Thursday) @ 14:00-15:00

TA Office Hours:
• Eric: Friday 9-11 am (in-person and Zoom)
• Japraj: Wednesday 3-5 pm (Zoom)
• Yennis: Thursday 2-4 (Zoom), Friday 2-4 (in-person)

Deadlines



5

Required:

Recommended:

Readings
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Questions about the class?

Questions about the previous lecture?

Funny stories to share?

Questions?
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Today’s Failure
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Event: October 21, 2018 22:52 UTC

Planned outage: goal is to replace a failing 100Gb/s optical network device.

“Connectivity between these two locations was restored in 43 seconds, but this brief 
outage triggered a chain of events that led to 24 hours and 11 minutes of service 
degradation.”

Infrastruture: MySQL with Orchestrator to manage cluster topologies.

Note: Orchestrator uses Raft for consensus.

Github.com Outage
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Network goes out: Raft starts “leadership deselection”

Note: optical link was between two Eastern US sites.

West coast data center and East coast Orchestrator form quorum

Fail over to clusters in West coast data center: write operations begin working.

Network fixed: traffic starts going to West coast site

Note: East coast had some updates that had not propagated to west coast yet.
This blocked primary returning to East coast.

Github.com Outage
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Things come unraveled due to increased latency, unexpected topologies.
Decision to degrade service rather than compromise consistency.

Start restoring databases from backup. 

Restoration was started October 22, 2018 00:05 UTC
Restoration completed and service restored October 22, 2018 23:03 UTC

Twenty three hours to restore from a 43 second network disruption.

Takeaway: Recovery is the hard part.
Source

Github.com

https://github.blog/2018-10-30-oct21-post-incident-analysis/
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Lesson Goals
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MapReduce

Spark (and RDDs)

Distributed Data Analytics
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Data Parallel (Divide & Conquer):
• Divide Data across nodes
• Load balancing, decomposition
• Messaging for data dependencies
• Application usage

Common Techniques
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Pipelining
• Divide work into smaller tasks

• Small number of tasks per 
node

• Faster than generality
• Data streamed in chunks through 

task pipeline
• Increases throughput

Common Techniques
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Model Parallelism
• Divide state across nodes
• Less processing per node
• Input passed to all nodes
• Output combined from all 

nodes
• Must handle dependencies

Common Techniques
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Model Parallelism
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MapReduce: Simplified Data Processing on Large Clusters, J. Dean, OSDI 2004.

• Hadoop MapReduce
• AWS infrastructure

MapReduce

http://nil.csail.mit.edu/6.824/2018/papers/mapreduce.pdf
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Input: 
• Set of key-value pair records

Map function
• Input: unique key-value pair
• Output: a new key-value pair

Reduce function:
• Input: output from map function
• Output: final result

Master: orchestrates workers, I/O, failure 
management

MapReduce
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Wordcount example:
• Input: Collection of files

Map function:
• Input: File, key=filename, content=value
• Output: file with key=word, value=list of 

counts
Reduce function:

• Input: file with key=word, value=list of 
counts

• Output: list of words with total counts
Other examples:

• URL access frequency, page rank, 
inverted word index 

MapReduce
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Combining Techniques:
• Data parallel: chunks to mappers
• Pipelining: mapper to reducer
• Model parallelism: reducers process 

parts of key space, combine

Dataflow model means flow of data determines 
execution

MapReduce
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Master data structures:
• Tracking

Locality:
• Scheduling, placement of intermediate data

Task granularity:
• Finer granularity: more flexibility, management operation execution time
• Coarse granularity: lower management overhead

Fault tolerance:
• Master: standby replication
• Worker: detect failures or stragglers and re-execute

Failure semantics:
• Importance of Consistency and complete results

Backup tasks:
• Inevitable failures: speculative task backup

Map Reduce: Design Decisions



22

Failure inevitable: cannot re-execute entire operation
Fault-tolerant mechanism: requires intermediate data availability

• Serialiation to/from persistent storage
• Remote access and data movement

Data amplification:
• Intermediate data may be much larger than input
• Executions are iterative
• Storage level replication

System scale: cannot assume best-in-class storage devices

Map Reduce: Limitations
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Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing

Faster analytics (10x) versus Hadoop
• Workloads: graph, streaming, SQL, Machine Learning, etc.
• Languages: Java, Python, Scala, etc.
• Platforms: AWS, Kubernetes, etc.

Apache Spark

Spark

https://cs.stanford.edu/%7Ematei/papers/2012/nsdi_spark.pdf
https://spark.apache.org/
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Allow in-memory data sharing
• Fast DRAM versus slow 

hard disk
• No serialization cost

Fault-tolerant

Spark: Goals
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Immutable partitioned record collection

Created using transformations
• Operations on data in stable 

storage
• Map/join/filter on other RDDs

Used via actions (count, collect, save)
RDDs map back to source

• Compute partitions from data in 
stable storage

Users control persistence and partitioning

Resilient Distributed Datasets: Introduction
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Console log mining example

Resilient Distributed Datasets: Example
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Resilient Distributed Datasets: Transformations & Actions
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Program defines dependencies

Actions:
• Directed acyclic graph (DAG)
• Minimize dependencies
• Optimize parallelism
• Limit I/O contention

Tasks assigned based on data locality

Resilient Distributed Datasets: Scheduling Action Execution
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Data in memory?
• Distributed shared memory like 

runtime
• Log updates
• Persist lineage

Log coarse grained operations applied to all 
items in RDD elements

Spark: Goals
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Data in memory?
• Distributed shared memory like 

runtime
• Log updates
• Persist lineage

Log coarse grained operations applied to all 
items in RDD elements

Spark: Goals
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Up to 20x better than Hadoop
• Iterative
• Machine learning
• Graph applications

Analytics report generation 40x

Rapid failure recovery

1TB dataset queries with 5-7 second 
latencies

Spark: Evaluation
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Lesson Review
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Systems for scalable data processing

MapReduce

Spark

Distributed Data Analytics
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Questions?
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