
Winter 2022 Term 2 (March 7, 2023)

Tony Mason (fsgeek@cs.ubc.ca), Lecturer

CPSC 416 Distributed
Systems

2

Logistics

3

Project 3 Released. Late Deadline: April 13, 2023. Report Grades Released.

Project 4 Released. Initially Due: March 13, 2023
Project 5 Released Due: April 13, 2023

All project work is due April 13, 2023. Late projects are scaled by 75%.

Deadlines

4

Alternate Path 1 & 2: Review in progress
• Piazza private threads need TLC

• Weekly updates due each Monday @ 23:59 PT

Instructor Office Hours:
• Zoom Office Hours (Tuesday) @ 13:00-14:00
• Discord (Casual) Office Hours (Thursday) @ 14:00-15:00

TA Office Hours:
• Eric: Friday 9-11 am (in-person and Zoom)
• Japraj: Wednesday 3-5 pm (Zoom)
• Yennis: Thursday 2-4 (Zoom), Friday 2-4 (in-person)

Deadlines

5

Required:

Recommended:
• Automatic verification of finite-state concurrent systems using temporal logic

specifications.
• Abstracting the Geniuses Away from Failure Testing
• fpaxos/fpaxos-tlaplus: TLA+ specification of Flexible Paxos (github.com)

Readings

https://dl.acm.org/doi/10.1145/5397.5399
https://queue.acm.org/detail.cfm?id=3155114
https://github.com/fpaxos/fpaxos-tlaplus

6

Questions about the class?

Questions about the previous lecture?

Funny stories to share?

Questions?

7

Today’s Failure

8

Distributed Systems Software Challenges:
• Not having a solid model
• Not thinking about failure
• Assuming explicit linearity

Biggest mistakes:
• Overlooking possible sources of error
• Writing code before you have a model
• Not using validation tools
• Assuming your testing is adequate

Today’s Failure: Software Development

https://xkcd.com/1739/

9

Lesson Goals

10

Introduction to Formal Verification

Introduction to TLA+

Formal Verification & TLA+

11

Step 1: Create a formal model of the system of interest
• Hardware
• Protocols

• Computer Bus
• Communications

• Software
• Mostly concurrent software

Formal Verification

Source

https://www.inf.ed.ac.uk/teaching/courses/fv/slides/slides01.pdf

12

Step 2: Create a formal specification
• Identify specific properties required
• Identify ground truths (“invariants”)

Formal Verification

13

Step 3: Validate your model
• Theorem proving (could be interactive)
• Model checking

Formal Verification

14

Specifications are Formulas
• Formulas described using Temporal Logic

Programs are Models
• Abstracted as Finite State Machines

Model Checking

15

Given 𝑀𝑀 is a set of interpretations and 𝜙𝜙 is a set of formulas the relationships are:

𝑀𝑀 ╞ 𝜙𝜙

Or 𝑀𝑀 entails 𝜙𝜙. Thus, if one is true, so is the other.

Alternatively: 𝑀𝑀 models 𝜙𝜙

Interpretation╞ Formula

16

Questions:
• For a fixed 𝜙𝜙 is 𝑀𝑀 ╞ 𝜙𝜙 true for all 𝑀𝑀

• Is 𝜙𝜙 valid?
• Can prove using a theorem prover (such as Isabelle)

• For a fixed 𝜙𝜙 is 𝑀𝑀 ╞ 𝜙𝜙 true for some 𝑀𝑀
• Satisfiable

• Given a fixed class of 𝑀𝑀 what 𝜙𝜙s make 𝑀𝑀 ╞ 𝜙𝜙 true?
• Research

• For a fixed 𝑀𝑀 and 𝜙𝜙 is it true that 𝑀𝑀 ╞ 𝜙𝜙
• Model checking

Interpretation╞ Formula

https://isabelle.in.tum.de/

17

Many tasks can be cast as model checking

Model Checking

Interpretations 𝑀𝑀 ╞ Formulas 𝜙𝜙 Task
Token sequences ╞ Grammars Parsing
Database tables ╞ SQL Queries Query execution
Email texts ╞ Spam rules Spam detection
Letter sequences ╞ Dictionary Spell checking
Audio data ╞ Acoustic/lang. model Speech recognition
Finite State
Machines

╞ Temporal logic Specification checking

18

Model Checking has been used to:
• Check Microsoft Windows device drivers for bugs

• The “Static Driver Verifier” tool
• The SPIN tool (http://spinroot.com):

• http://spinroot.com/spin/success.html
• Flood control barrier control software
• Call processing software at Lucent
• Parts of Mars Science Laboratory

• PEPA (Performance Evaluation Process Algebra)
• Multiprocessor systems
• Biological systems

Model Checking Examples

http://www.dcs.ed.ac.uk/pepa/

19

A model of some system has:
• A finite set of states
• A subset of states considered as the initial states
• A transition relation which, given a state, describes all states that can be reached “in

one time step”.

Good for
• Software, sequential and concurrent
• Digital hardware
• Communication protocols

Refinements of this setup can handle: Infinite state spaces, Continuous state spaces, Continuous
time, Probabilistic Transitions. Good for hybrid (i.e., discrete and continuous) and control systems

Models for Model Checking

20

Models are always abstractions of reality.
• We must choose what to model and what not to model
• There will limitations forced by the formalism

• e.g., here we are limited to finite state models
• There will be things we do not understand sufficiently to model

• e.g., people

Models for Model Checking

21

We are interested in specifying behaviours of systems over time.
• Use Temporal Logic

Specifications are built from:
1. Primitive properties of individual states e.g., “is on”, “is off”, “is active”, “is reading”;
2. Propositional connectives ∧, ∨, ¬, →; and
3. Temporal connectives:

e.g., At all times, the system is not simultaneously reading and writing.
If a request signal is asserted at some time, a corresponding grant signal will be
asserted within 10 time units.

Model Checking: Specifications

22

The exact set of temporal connectives differs across temporal logics.

Logics can differ in how they treat time:
• Linear time vs. Branching time

These differ in reasoning about non-determinism.

Model Checking: Specifications

23

In general, system descriptions are non-deterministic.

A system is non-deterministic when, from some state there are multiple alternative next
states to which the system could transition.

Non-determinism is good for:
• Modelling alternative inputs to the system from its environment (External non-

determinism)
• Under-specifying the model, allowing it to capture many possible system

implementations (Internal non-determinism)

Non-determinism

24

Linear Time
• Considers paths (sequences of states)
• If system is non-deterministic, many paths for each initial state
• Questions of the form:

• For all paths, does some path property hold?
• Does there exist a path such that some path property holds?

Linear versus Branching Time

25

LTL = Linear(-time) Temporal Logic
Assume some set Atom of atomic propositions Syntax of LTL formulas ϕ: ϕ ::= p | ¬ϕ | ϕ ∨ ϕ
| ϕ ∧ ϕ | ϕ → ϕ | Xϕ | Fϕ | Gϕ | ϕUϕ where p ∈ Atom. Pronunciation: ▶ Xϕ — neXt ϕ ▶ Fϕ —
Future ϕ ▶ Gϕ — Globally ϕ ▶ ϕUψ — ϕ Until ψ Other common connectives: W (weak until),
R (release). Precedence high-to-low: (X, F, G, ¬),(U),(∧, ∨), →

LTL Syntax

26

Branching Time
• Considers tree of possible future states from each initial state
• If system is non-deterministic from some state, tree forks
• Questions can become more complex, e.g.,

• For all states reachable from an initial state, does there exist an onwards
path to a state satisfying some property?

• Most-basic branching-time logic (CTL) is complementary to most-basic linear-
time logic (LTL)

• Richer branching-time logic (CTL∗) incorporates CTL and LTL

Linear versus Branching Time

27

LTL formulas are evaluated at a position i along a path π through the system (a path is a
sequence of states connected by transitions)

• An atomic p holds if p is true for the state at position i.
• The propositional connectives ¬, ∧, ∨, → have their usual meanings.
• Meaning of LTL connectives:

• Xϕ holds if ϕ holds at the next position;
• Fϕ holds if there exists a future position where ϕ holds;
• Gϕ holds if, for all future positions, ϕ holds;
• ϕUψ holds if there is a future position where ψ holds, and ϕ holds for all

positions prior to that.

LTL – Informal Semantics

28

Given a model for a distributed system:
• Describe a model
• Verify the expected behaviour

Uses:
• Distributed Database
• Network Protocols

Benefit:
• Allows you to reason about the entire system
• Explore different scenarios
• Use “search spaces” to expand test effectivenss

What is TLA+

https://plugins.jetbrains.com/plugin/17965-tla-

29

Benefits
• Allows formal verification

• Formal, precise system description
• Permits automated reasoning

• Early error detection
• Higher confidence in the system
• Flexibility

• Expressive language
• Can model complex systems
• Modular
• Easy management

Why Use TLA+

https://marketplace.visualstudio.com/items?itemName=alygin.vscode-tlaplus

30

Alternatives:
• Model Checking
• Theorem Proving
• Abstract interpretation
• Petri Nets
• Z Notation

Advantages of TLA+:
• Easy to learn/simple
• Expressive
• Scalable
• Versatile

TLA+ versus Other Formal Methods

https://dl.acm.org/doi/10.1145/5397.5399
https://www.sciencedirect.com/topics/computer-science/theorem-proving
https://mitpress.mit.edu/9780262044905/principles-of-abstract-interpretation/
https://link.springer.com/referenceworkentry/10.1007/978-0-387-09766-4_134
https://github.com/Spivoxity/zrm

31

Uses mathematical notation
• Precise
• Human-readable

Specifications are express using:
• State variables: state of system at any given time
• State transitions: mutation of state based on inputs
• Temporal properties: invariant conditions that must be true over time

Specifications are composable: allows modular decomposition

TLA+ toolset:
• TLA+ toolbox
• TLC model checker
• PlusCal language

TLA+ Syntax & Semantics

https://www.learntla.com/index.html
https://lamport.azurewebsites.net/tla/toolbox.html
https://prob.hhu.de/w/index.php?title=TLC
https://lamport.azurewebsites.net/tla/tutorial/intro.html

32

Amazon Web Services

Azure: Cosmos DB Service

Train Management

Uber: Driver/Rider matching

TLA+ Case Studies

https://lamport.azurewebsites.net/tla/formal-methods-amazon.pdf
https://github.com/Azure/azure-cosmos-tla
https://www.heinbockel.eu/2019/12/08/train-sidings-a-tla-example/
https://web.archive.org/web/20180822153224/https:/eng.uber.com/building-tincup/

33

TLA+ Homepage

TLA+ Video Course

TLA+ Google Group

TLA+ Examples on Github

TLA+ Toolbox

TLA+ Resources & Learning Materials

https://lamport.azurewebsites.net/tla/tla.html
https://lamport.azurewebsites.net/video/videos.html
https://groups.google.com/g/tlaplus
https://github.com/tlaplus/Examples
https://lamport.azurewebsites.net/tla/toolbox.html

34

Lesson Review

35

Introduction to Formal Verification

Introduction to TLA+

What we covered

36

Questions?

	CPSC 416 Distributed Systems
	Logistics
	Deadlines
	Deadlines
	Readings	
	Questions?
	Today’s Failure
	Today’s Failure: Software Development
	Lesson Goals
	Formal Verification & TLA+
	Formal Verification
	Formal Verification
	Formal Verification
	Model Checking
	Interpretation╞ Formula
	Interpretation╞ Formula
	Model Checking
	Model Checking Examples
	Models for Model Checking
	Models for Model Checking
	Model Checking: Specifications
	Model Checking: Specifications
	Non-determinism
	Linear versus Branching Time
	LTL Syntax
	Linear versus Branching Time
	LTL – Informal Semantics
	What is TLA+
	Why Use TLA+
	TLA+ versus Other Formal Methods
	TLA+ Syntax & Semantics
	TLA+ Case Studies
	TLA+ Resources & Learning Materials
	Lesson Review
	What we covered
	Questions?
	Click to edit Master title style

