~ e QRN : _"' - o é_“_‘ .
B e = .
.) R ?.M of ;‘.." ;

-
- ,ﬂv = ""_ A
el o

g

CPSC 416 Distributed
Systems

Winter 2022 Term 2 (March 7, 2023)

Tony Mason (fsgeek@cs.ubc.ca), Lecturer

Logistics

Deadlines

Project 3 Released. Late Deadline: April 13, 2023. Report Grades Released.

Project 4 Released. Initially Due: March 13, 2023
Project 5 Released Due: April 13, 2023

All project work is due April 13, 2023. Late projects are scaled by 75%.

Deadlines

Alternate Path 1 & 2: Review in progress
» Piazza private threads need TLC
* Weekly updates due each Monday @ 23:59 PT

Instructor Office Hours:
« Zoom Office Hours (Tuesday) @ 13:00-14:00
» Discord (Casual) Office Hours (Thursday) @ 14:00-15:00

TA Office Hours:
» Eric: Friday 9-11 am (in-person and Zoom)
+ Japraj: Wednesday 3-5 pm (Zoom)
* Yennis: Thursday 2-4 (Zoom), Friday 2-4 (in-person)

Readings
Required:

Recommended:
* Automatic verification of finite-state concurrent systems using temporal logic

specifications.

* Abstracting the Geniuses Away from Failure Testing

» fpaxos/fpaxos-tlaplus: TLA+ specification of Flexible Paxos (github.com)

https://dl.acm.org/doi/10.1145/5397.5399
https://queue.acm.org/detail.cfm?id=3155114
https://github.com/fpaxos/fpaxos-tlaplus

Questions?

Questions about the class?
Questions about the previous lecture?

Funny stories to share?

Today’s Failure: Software Development

Distributed Systems Software Challenges:

* Not having a solid model

WHAT ARE YOO LIORKING ON?
* Not thinking about failure TRYING TO Fix THE. PROBLEMS T
« Assuming explicit linearity CREATED WHEN I TRIED TO FiX
THE PROBLEMS T CREATED \JHEN
LTRIEDTO FIX THE PROBLEMS
Biggest mistakes: 'z T CREATED LJHEN...
» Overlooking possible sources of error /

« Writing code before you have a model
* Not using validation tools
« Assuming your testing is adequate

UB

0

€

https://xkcd.com/1739/

Lesson Goals

Formal Verification & TLA+

Introduction to Formal Verification

Introduction to TLA+

Cc
o
0

i

10

Formal Verification

Step 1: Create a formal model of the system of interest
« Hardware
* Protocols
 Computer Bus
 Communications
» Software
* Mostly concurrent software

Source

https://www.inf.ed.ac.uk/teaching/courses/fv/slides/slides01.pdf

Formal Verification

Step 2: Create a formal specification
» Identify specific properties required
» Identify ground truths (“invariants”)

Formal Verification

Step 3: Validate your model
« Theorem proving (could be interactive)
* Model checking

Model Checking

Specifications are Formulas
* Formulas described using Temporal Logic

Programs are Models
» Abstracted as Finite State Machines

Interpretation | Formula

Given M is a set of interpretations and ¢ is a set of formulas the relationships are:

C
o
0

M k¢

Or M entails ¢. Thus, if one is true, so is the other.

—_—

Alternatively: M models ¢ ——

Interpretation | Formula

Questions:

For a fixed ¢ is M [¢ true for all M

* Is ¢ valid?

« Can prove using a theorem prover (such as Isabelle)
For a fixed ¢ is M [¢ true for some M

« Satisfiable

Given a fixed class of M what ¢s make M |=qb true?

* Research

For a fixed M and ¢ is it true that M k¢

* Model checking

https://isabelle.in.tum.de/

Model Checking

Many tasks can be cast as model checking

UBC
Interpretations - ¥

Token sequences
Database tables
Email texts

Letter sequences
Audio data

; Finite State
Machines

Grammars

SQL Queries

Spam rules
Dictionary
Acoustic/lang. model
Temporal logic

Parsing

Query execution

Spam detection

Spell checking

Speech recognition
Specification checking &=

17

Model Checking Examples

Model Checking has been used to:

C
o
0

» Check Microsoft Windows device drivers for bugs

» The “Static Driver Verifier” tool
* The SPIN tool (http://spinroot.com):
» http://spinroot.com/spin/success.html

T

* Flood control barrier control software
» Call processing software at Lucent ——
» Parts of Mars Science Laboratory

« PEPA (Performance Evaluation Process Algebra)

* Multiprocessor systems
* Biological systems

http://www.dcs.ed.ac.uk/pepa/

Models for Model Checking

A model of some system has:

« Afinite set of states UBC
* A subset of states considered as the initial states W

« Atransition relation which, given a state, describes all states that can be reached “in
one time step”.

« Software, sequential and concurrent
» Digital hardware
« Communication protocols

Refinements of this setup can handle: Infinite state spaces, Continuous state spaces, Continuous
time, Probabilistic Transitions. Good for hybrid (i.e., discrete and continuous) and control systems

Models for Model Checking

Models are always abstractions of reality.
* We must choose what to model and what not to model
* There will limitations forced by the formalism
* e.g., here we are limited to finite state models
» There will be things we do not understand sufficiently to model
* e.g., people

Cc
o
0

i

20

Model Checking: Specifications

We are interested in specifying behaviours of systems over time.

Use Temporal Logic UB

0

€

Specifications are built from:

1.
2.
3.

Primitive properties of individual states e.g., “is on”, “is off”, “is active”, “is reading”;
Propositional connectives A, v, 7, —; and

Temporal connectives:

e.g., At all times, the system is not simultaneously reading and writing.

If a request signal is asserted at some time, a corresponding grant signal will be
asserted within 10 time units.

21

Model Checking: Specifications

The exact set of temporal connectives differs across temporal logics.

Logics can differ in how they treat time:
* Linear time vs. Branching time

These differ in reasoning about non-determinism.

Non-determinism

In general, system descriptions are non-deterministic.

A system is non-deterministic when, from some state there are multiple alternative next
states to which the system could transition.

Non-determinism is good for:
* Modelling alternative inputs to the system from its environment (External non-

determinism)
« Under-specifying the model, allowing it to capture many possible system

implementations (Internal non-determinism)

Linear versus Branching Time

Linear Time
» Considers paths (sequences of states)
+ If system is non-deterministic, many paths for each initial state
* Questions of the form:
* For all paths, does some path property hold?
* Does there exist a path such that some path property holds?

LTL Syntax

LTL = Linear(-time) Temporal Logic

Assume some set Atom of atomic propositions Syntax of LTL formulas ¢: ¢ ::=p| ¢ |dV
|OAD|[d— | X |Fd | G | pUd where p € Atom. Pronunciation: » X¢ — neXt ¢ » F¢p —
Future ¢ » G¢ — Globally ¢ » Uy — ¢ Until y Other common connectives: W (weak until),
R (release). Precedence high-to-low: (X, F, G, 7),(U),(A, V), —

UBC

e

ﬂiulbih

25

Linear versus Branching Time

Branching Time

Considers tree of possible future states from each initial state
If system is non-deterministic from some state, tree forks
Questions can become more complex, e.g.,
» For all states reachable from an initial state, does there exist an onwards
path to a state satisfying some property?
Most-basic branching-time logic (CTL) is complementary to most-basic linear-
time logic (LTL)
Richer branching-time logic (CTL#) incorporates CTL and LTL

Cc
o
0

i

26

LTL — Informal Semantics

LTL formulas are evaluated at a position i along a path 1 through the system (a path is a
sequence of states connected by transitions)
* An atomic p holds if p is true for the state at position i.
« The propositional connectives 7, A, v, — have their usual meanings.
* Meaning of LTL connectives:
« X¢ holds if ¢ holds at the next position;
* F¢ holds if there exists a future position where ¢ holds;
* G¢ holds if, for all future positions, ¢ holds;
* ¢Uy holds if there is a future position where g holds, and ¢ holds for all
positions prior to that.

UB

0

What is TLA+

Given a model for a distributed system:

 Describe a model +

« Verify the expected behaviour

Uses:

* Distributed Database

 Network Protocols S —
Benefit:

« Allows you to reason about the entire system
» Explore different scenarios
* Use “search spaces” to expand test effectivenss

https://plugins.jetbrains.com/plugin/17965-tla-

Why Use TLA+

Benefits

C
o
0

* Allows formal verification

i

« Formal, precise system description
* Permits automated reasoning
* Early error detection
« Higher confidence in the system
* Flexibility
* Expressive language
« Can model complex systems
* Modular
« Easy management

https://marketplace.visualstudio.com/items?itemName=alygin.vscode-tlaplus

TLA+ versus Other Formal Methods

Alternatives:

Model Checking
Theorem Proving

Abstract interpretation

Petri Nets
Z Notation

Advantages of TLA+:

Easy to learn/simple
Expressive

Scalable

Versatile

0

UB

€

30

https://dl.acm.org/doi/10.1145/5397.5399
https://www.sciencedirect.com/topics/computer-science/theorem-proving
https://mitpress.mit.edu/9780262044905/principles-of-abstract-interpretation/
https://link.springer.com/referenceworkentry/10.1007/978-0-387-09766-4_134
https://github.com/Spivoxity/zrm

TLA+ Syntax & Semantics

Uses mathematical notation

. Precise
. Human-readable

Specifications are express using:
« State variables: state of system at any given time
« State transitions: mutation of state based on inputs
+ Temporal properties: invariant conditions that must be true over time

Specifications are composable: allows modular decomposition

TLA+ toolset:
 TLA+ toolbox
« TLC model checker
» PlusCal language

https://www.learntla.com/index.html
https://lamport.azurewebsites.net/tla/toolbox.html
https://prob.hhu.de/w/index.php?title=TLC
https://lamport.azurewebsites.net/tla/tutorial/intro.html

TLA+ Case Studies

Amazon Web Services

Azure: Cosmos DB Service

Train Management

Uber: Driver/Rider matching

C
o
0

—_—

https://lamport.azurewebsites.net/tla/formal-methods-amazon.pdf
https://github.com/Azure/azure-cosmos-tla
https://www.heinbockel.eu/2019/12/08/train-sidings-a-tla-example/
https://web.archive.org/web/20180822153224/https:/eng.uber.com/building-tincup/

TLA+ Resources & Learning Materials

TLA+ Homepage

TLA+ Video Course

TLA+ Google Group

TLA+ Examples on Github

TLA+ Toolbox

https://lamport.azurewebsites.net/tla/tla.html
https://lamport.azurewebsites.net/video/videos.html
https://groups.google.com/g/tlaplus
https://github.com/tlaplus/Examples
https://lamport.azurewebsites.net/tla/toolbox.html

Lesson Review

What we covered

Introduction to Formal Verification

Introduction to TLA+

Cc
o
0

i

35

Questions?

36

THE UNIVERSITY OF BRITISH COLUMBIA

	CPSC 416 Distributed Systems
	Logistics
	Deadlines
	Deadlines
	Readings	
	Questions?
	Today’s Failure
	Today’s Failure: Software Development
	Lesson Goals
	Formal Verification & TLA+
	Formal Verification
	Formal Verification
	Formal Verification
	Model Checking
	Interpretation╞ Formula
	Interpretation╞ Formula
	Model Checking
	Model Checking Examples
	Models for Model Checking
	Models for Model Checking
	Model Checking: Specifications
	Model Checking: Specifications
	Non-determinism
	Linear versus Branching Time
	LTL Syntax
	Linear versus Branching Time
	LTL – Informal Semantics
	What is TLA+
	Why Use TLA+
	TLA+ versus Other Formal Methods
	TLA+ Syntax & Semantics
	TLA+ Case Studies
	TLA+ Resources & Learning Materials
	Lesson Review
	What we covered
	Questions?
	Click to edit Master title style

