
Winter 2022 Term 2 (March 7, 2023)

Tony Mason (fsgeek@cs.ubc.ca), Lecturer

CPSC 416 Distributed 
Systems
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Logistics
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Project 3 Released. Late Deadline: April 13, 2023. Report Grades Released.

Project 4 Released. Initially Due: March 13, 2023
Project 5 Released Due: April 13, 2023

All project work is due April 13, 2023.  Late projects are scaled by 75%.

Deadlines
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Alternate Path 1 & 2: Review in progress
• Piazza private threads need TLC

• Weekly updates due each Monday @ 23:59 PT

Instructor Office Hours:
• Zoom Office Hours (Tuesday) @ 13:00-14:00
• Discord (Casual) Office Hours (Thursday) @ 14:00-15:00

TA Office Hours:
• Eric: Friday 9-11 am (in-person and Zoom)
• Japraj: Wednesday 3-5 pm (Zoom)
• Yennis: Thursday 2-4 (Zoom), Friday 2-4 (in-person)

Deadlines
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Required:

Recommended:
• Automatic verification of finite-state concurrent systems using temporal logic 

specifications.
• Abstracting the Geniuses Away from Failure Testing
• fpaxos/fpaxos-tlaplus: TLA+ specification of Flexible Paxos (github.com)

Readings

https://dl.acm.org/doi/10.1145/5397.5399
https://queue.acm.org/detail.cfm?id=3155114
https://github.com/fpaxos/fpaxos-tlaplus
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Questions about the class?

Questions about the previous lecture?

Funny stories to share?

Questions?
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Today’s Failure
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Distributed Systems Software Challenges:
• Not having a solid model
• Not thinking about failure
• Assuming explicit linearity

Biggest mistakes:
• Overlooking possible sources of error
• Writing code before you have a model
• Not using validation tools
• Assuming your testing is adequate

Today’s Failure: Software Development

https://xkcd.com/1739/
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Lesson Goals
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Introduction to Formal Verification

Introduction to TLA+

Formal Verification & TLA+
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Step 1: Create a formal model of the system of interest
• Hardware
• Protocols

• Computer Bus
• Communications

• Software
• Mostly concurrent software

Formal Verification

Source

https://www.inf.ed.ac.uk/teaching/courses/fv/slides/slides01.pdf
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Step 2: Create a formal specification
• Identify specific properties required
• Identify ground truths (“invariants”)

Formal Verification
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Step 3: Validate your model
• Theorem proving (could be interactive)
• Model checking

Formal Verification
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Specifications are Formulas
• Formulas described using Temporal Logic

Programs are Models
• Abstracted as Finite State Machines

Model Checking
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Given 𝑀𝑀 is a set of interpretations and 𝜙𝜙 is a set of formulas the relationships are:

𝑀𝑀 ╞ 𝜙𝜙

Or 𝑀𝑀 entails 𝜙𝜙.  Thus, if one is true, so is the other.

Alternatively: 𝑀𝑀 models 𝜙𝜙

Interpretation╞ Formula
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Questions:
• For a fixed 𝜙𝜙 is 𝑀𝑀 ╞ 𝜙𝜙 true for all 𝑀𝑀

• Is 𝜙𝜙 valid?
• Can prove using a theorem prover (such as Isabelle)

• For a fixed 𝜙𝜙 is 𝑀𝑀 ╞ 𝜙𝜙 true for some 𝑀𝑀
• Satisfiable

• Given a fixed class of 𝑀𝑀 what 𝜙𝜙s make 𝑀𝑀 ╞ 𝜙𝜙 true?
• Research

• For a fixed 𝑀𝑀 and 𝜙𝜙 is it true that 𝑀𝑀 ╞ 𝜙𝜙
• Model checking

Interpretation╞ Formula

https://isabelle.in.tum.de/
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Many tasks can be cast as model checking

Model Checking

Interpretations 𝑀𝑀 ╞ Formulas 𝜙𝜙 Task
Token sequences ╞ Grammars Parsing
Database tables ╞ SQL Queries Query execution
Email texts ╞ Spam rules Spam detection
Letter sequences ╞ Dictionary Spell checking
Audio data ╞ Acoustic/lang. model Speech recognition
Finite State 
Machines

╞ Temporal logic Specification checking
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Model Checking has been used to: 
• Check Microsoft Windows device drivers for bugs 

• The “Static Driver Verifier” tool
• The SPIN tool (http://spinroot.com): 

• http://spinroot.com/spin/success.html 
• Flood control barrier control software
• Call processing software at Lucent
• Parts of Mars Science Laboratory

• PEPA (Performance Evaluation Process Algebra) 
• Multiprocessor systems 
• Biological systems

Model Checking Examples

http://www.dcs.ed.ac.uk/pepa/
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A model of some system has: 
• A finite set of states 
• A subset of states considered as the initial states 
• A transition relation which, given a state, describes all states that can be reached “in 

one time step”. 

Good for 
• Software, sequential and concurrent
• Digital hardware
• Communication protocols 

Refinements of this setup can handle: Infinite state spaces, Continuous state spaces, Continuous 
time, Probabilistic Transitions. Good for hybrid (i.e., discrete and continuous) and control systems

Models for Model Checking
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Models are always abstractions of reality.
• We must choose what to model and what not to model 
• There will limitations forced by the formalism

• e.g., here we are limited to finite state models
• There will be things we do not understand sufficiently to model 

• e.g., people

Models for Model Checking
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We are interested in specifying behaviours of systems over time.
• Use Temporal Logic 

Specifications are built from: 
1. Primitive properties of individual states e.g., “is on”, “is off”, “is active”, “is reading”; 
2. Propositional connectives ∧, ∨, ¬, →; and
3. Temporal connectives: 

e.g., At all times, the system is not simultaneously reading and writing. 
If a request signal is asserted at some time, a corresponding grant signal will be 
asserted within 10 time units. 

Model Checking: Specifications
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The exact set of temporal connectives differs across temporal logics. 

Logics can differ in how they treat time: 
• Linear time vs. Branching time 

These differ in reasoning about non-determinism.

Model Checking: Specifications
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In general, system descriptions are non-deterministic. 

A system is non-deterministic when, from some state there are multiple alternative next 
states to which the system could transition. 

Non-determinism is good for: 
• Modelling alternative inputs to the system from its environment (External non-

determinism)
• Under-specifying the model, allowing it to capture many possible system 

implementations (Internal non-determinism)

Non-determinism
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Linear Time
• Considers paths (sequences of states) 
• If system is non-deterministic, many paths for each initial state 
• Questions of the form: 

• For all paths, does some path property hold? 
• Does there exist a path such that some path property holds? 

Linear versus Branching Time
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LTL = Linear(-time) Temporal Logic 
Assume some set Atom of atomic propositions Syntax of LTL formulas ϕ: ϕ ::= p | ¬ϕ | ϕ ∨ ϕ 
| ϕ ∧ ϕ | ϕ → ϕ | Xϕ | Fϕ | Gϕ | ϕUϕ where p ∈ Atom. Pronunciation: ▶ Xϕ — neXt ϕ ▶ Fϕ —
Future ϕ ▶ Gϕ — Globally ϕ ▶ ϕUψ — ϕ Until ψ Other common connectives: W (weak until), 
R (release). Precedence high-to-low: (X, F, G, ¬),(U),(∧, ∨), → 

LTL Syntax
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Branching Time
• Considers tree of possible future states from each initial state
• If system is non-deterministic from some state, tree forks
• Questions can become more complex, e.g.,

• For all states reachable from an initial state, does there exist an onwards 
path to a state satisfying some property? 

• Most-basic branching-time logic (CTL) is complementary to most-basic linear-
time logic (LTL) 

• Richer branching-time logic (CTL∗ ) incorporates CTL and LTL

Linear versus Branching Time
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LTL formulas are evaluated at a position i along a path π through the system (a path is a 
sequence of states connected by transitions) 

• An atomic p holds if p is true for the state at position i.
• The propositional connectives ¬, ∧, ∨, → have their usual meanings.
• Meaning of LTL connectives: 

• Xϕ holds if ϕ holds at the next position; 
• Fϕ holds if there exists a future position where ϕ holds; 
• Gϕ holds if, for all future positions, ϕ holds; 
• ϕUψ holds if there is a future position where ψ holds, and ϕ holds for all 

positions prior to that.

LTL – Informal Semantics
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Given a model for a distributed system:
• Describe a model
• Verify the expected behaviour

Uses:
• Distributed Database
• Network Protocols

Benefit:
• Allows you to reason about the entire system
• Explore different scenarios
• Use “search spaces” to expand test effectivenss

What is TLA+

https://plugins.jetbrains.com/plugin/17965-tla-
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Benefits
• Allows formal verification

• Formal, precise system description
• Permits automated reasoning

• Early error detection
• Higher confidence in the system
• Flexibility

• Expressive language
• Can model complex systems
• Modular
• Easy management

Why Use TLA+

https://marketplace.visualstudio.com/items?itemName=alygin.vscode-tlaplus
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Alternatives:
• Model Checking
• Theorem Proving
• Abstract interpretation
• Petri Nets
• Z Notation

Advantages of TLA+:
• Easy to learn/simple
• Expressive
• Scalable
• Versatile

TLA+ versus Other Formal Methods

https://dl.acm.org/doi/10.1145/5397.5399
https://www.sciencedirect.com/topics/computer-science/theorem-proving
https://mitpress.mit.edu/9780262044905/principles-of-abstract-interpretation/
https://link.springer.com/referenceworkentry/10.1007/978-0-387-09766-4_134
https://github.com/Spivoxity/zrm
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Uses mathematical notation
• Precise
• Human-readable

Specifications are express using:
• State variables: state of system at any given time
• State transitions: mutation of state based on inputs
• Temporal properties: invariant conditions that must be true over time

Specifications are composable: allows modular decomposition

TLA+ toolset:
• TLA+ toolbox
• TLC model checker
• PlusCal language

TLA+ Syntax & Semantics

https://www.learntla.com/index.html
https://lamport.azurewebsites.net/tla/toolbox.html
https://prob.hhu.de/w/index.php?title=TLC
https://lamport.azurewebsites.net/tla/tutorial/intro.html
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Amazon Web Services

Azure: Cosmos DB Service

Train Management

Uber: Driver/Rider matching

TLA+ Case Studies

https://lamport.azurewebsites.net/tla/formal-methods-amazon.pdf
https://github.com/Azure/azure-cosmos-tla
https://www.heinbockel.eu/2019/12/08/train-sidings-a-tla-example/
https://web.archive.org/web/20180822153224/https:/eng.uber.com/building-tincup/
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TLA+ Homepage

TLA+ Video Course

TLA+ Google Group

TLA+ Examples on Github

TLA+ Toolbox

TLA+ Resources & Learning Materials

https://lamport.azurewebsites.net/tla/tla.html
https://lamport.azurewebsites.net/video/videos.html
https://groups.google.com/g/tlaplus
https://github.com/tlaplus/Examples
https://lamport.azurewebsites.net/tla/toolbox.html
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Lesson Review
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Introduction to Formal Verification

Introduction to TLA+

What we covered
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Questions?
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