
Winter 2022 Term 2 (March 2, 2023)

Tony Mason (fsgeek@cs.ubc.ca), Lecturer

CPSC 416 Distributed 
Systems



2

PMMC Walk-Through



3

“Paxos Made Moderately Complex” Made Moderately Simple

Source: University of Washington CSE 452



4

State machine replication

Reminder: want to agree on order of ops 

Can think of operations as a log

Op1 Op2 Op3 Op4 Op5 Op6



5



Paxos

Paxos =

Phase 1
- Send prepare messages

- Pick value to accept 
Phase 2

- Send accept messages



7

- Lets us do operations with one round-trip

Can we do better?

Phase 1: “leader election”

- Deciding whose value we will use 

Phase 2: “commit”

- Leader makes sure it’s still leader, commits value 

What if we split these phases?



8

- “Vote” on leaders

Roles in PMMC

Replicas (like learners)

- Keep log of operations, state machine, configs 

Leaders (like proposers)

- Get elected, drive the consensus protocol 

Acceptors (simpler than in Paxos Made Simple!)



9

A note about ballots in PMMC

(leader, seqnum) pairs

Isomorphic to the system we discussed earlier

0

1

2

3

0, 4, 8, 12, 16, …

1, 5, 9, 13, 17, …

2, 6, 10, 14, 18, …

3, 7, 11, 15, 19, …



10

A note about ballots in PMMC

(leader, seqnum) pairs

Isomorphic to the system we discussed earlier

0

1

2

3

0.0, 1.0, 2.0, 3.0, 4.0, …

0.1, 1.1, 2.1, 3.1, 4.1, …

0.2, 1.2, 2.2, 3.2, 4.2, …

0.3, 1.3, 2.3, 3.3, 4.3, …



11

Paxos Made Moderately Complex Made Simple



12

Paxos Made Moderately Complex Made Simple



13

Acceptors

Acceptor

ballot_num: _ 
accepted:[]



14

Acceptors

ballot_num: _ 
accepted:[]

p1a(0.1)
Acceptor



15

Acceptors

ballot_num: 0.1 
accepted:[]

p1a(0.1)
Acceptor



16

Acceptors

Acceptor

ballot_num: 0.1 
accepted:[]

p1a(0.1)

p1b([])



17

Acceptors

Acceptor

ballot_num: 0.1 
accepted:[]



18

Acceptors

ballot_num: 0.1 
accepted:[]

p1a(0.0)
Acceptor



19

Acceptors

Acceptor

ballot_num: 0.1 
accepted:[]

p1a(0.0)

Nope!



20

Acceptors

Acceptor

ballot_num: 0.1 
accepted:[]



21

Acceptors

Acceptor

ballot_num: 0.1 
accepted:[]

p2a(<0.1, 0, A>)



22

Acceptors

ballot_num: 0.1
accepted:[<0.1, 0, A>]

p2a(<0.1, 0, A>)
Acceptor



23

Acceptors

ballot_num: 0.1
accepted:[<0.1, 0, A>]

p2a(<0.1, 0, A>)
Acceptor

OK!



24

Acceptors

Acceptor

ballot_num: 0.1
accepted:[<0.1, 0, A>]



25

Acceptors

ballot_num: 0.1
accepted:[<0.1, 0, A>]

p2a(<0.0, 0, B>)
Acceptor



26

Acceptors

ballot_num: 0.1
accepted:[<0.1, 0, A>]

p2a(<0.0, 0, B>)
Acceptor

Nope!



27

Acceptors

Acceptor

ballot_num: 0.1
accepted:[<0.1, 0, A>]



28

Acceptors

- Ballot numbers increase

- Only accept values from current ballot

- Never remove ballots

- If a value v is chosen by a majority on ballot b, then
any value accepted by any acceptor in the same slot
on ballot b’ > b has the same value



29

Paxos Made Moderately Complex Made Simple



30

Paxos Made Moderately Complex Made Simple



31

Leader: Getting Elected

Leader

active: false 
ballot_num: 0.0 
proposals: []



32

Leader: Getting Elected

Leader

active: false 
ballot_num: 0.0 
proposals: []

Acceptor

Acceptor

Acceptor

p1a(0.0)



33

Leader: Getting Elected

active: false 
ballot_num: 0.0 
proposals: []

Acceptor

Acceptor

Acceptor

Nope!
Leader

Nope!



34

Leader: Getting Elected

Leader

active: false 
ballot_num: 1.0 
proposals: []

Acceptor

Acceptor

Acceptor



35

Leader: Getting Elected

Leader

active: false 
ballot_num: 1.0 
proposals: []

Acceptor

Acceptor

Acceptor

Or…



36

Leader: Getting Elected

active: false 
ballot_num: 0.0 
proposals: []

Acceptor

Acceptor

Acceptor

OK([])!
Leader

OK([])!



37

Leader: Getting Elected

Leader

active: true 
ballot_num: 0.0 
proposals: []

Acceptor

Acceptor

Acceptor



38

When should a leader try to get elected?

• At the beginning of time

• When the current leader seems to have failed

Paper describes an algorithm, based on pinging the leader and timing
out

If you get preempted, don’t immediately try for election again!

When to run for office



39

Paxos Made Moderately Complex Made Simple



40

Paxos Made Moderately Complex Made Simple



41

Leader: Handling proposals

Leader

active: true 
ballot_num: 0.0 
proposals: []

Acceptor

Acceptor

Acceptor
Op1 should be A 
(A = “Put k1 v1”)

Replica



42

Leader: Handling proposals

Leader

active: true 
ballot_num: 0.0
proposals: [<1, A>]

Acceptor

Acceptor

Acceptor

Replica



43

Leader: Handling proposals

active: true 
ballot_num: 0.0
proposals: [<1, A>]

Acceptor

Acceptor

Acceptor

Leader
p2a(<0.0, 1, A>)

Replica



44

Leader: Handling proposals

active: true 
ballot_num: 0.0
proposals: [<1, A>]

Acceptor

Acceptor

Acceptor

Nope!
Leader

Nope!

Replica



45

Leader: Handling proposals

Leader

active: false 
ballot_num: 0.0
proposals: [<1, A>]

Acceptor

Acceptor

Acceptor

Replica



46

Leader: Handling proposals

Leader

active: false 
ballot_num: 0.0
proposals: [<1, A>]

Acceptor

Acceptor

Acceptor

Or…

Replica



47

Leader: Handling proposals

active: true 
ballot_num: 0.0
proposals: [<1, A>]

Acceptor

Acceptor

Acceptor

OK!
Leader

OK!

Replica



48

Leader: Handling proposals

Leader

active: true 
ballot_num: 0.0
proposals: [<1, A>]

Acceptor

Acceptor

Acceptor
Op1 is A

Replica Replica Replica



49

Only propose one value per ballot and slot

If a value v is chosen by a majority on ballot b, then any value proposed by any
leader in the same slot on ballot b’ > b has the same value

Leaders



50

Paxos Made Moderately Complex Made Simple



51

Paxos Made Moderately Complex Made Simple



52

Replicas

Put k1 v1 Put k2 v2

Replica

Op1 Op2 Op3 Op4 Op5 Op6



53

Replicas

Put k1 v1 Put k2 v2 App k1 v1 App k2 v2

slot_out slot_in

Replica

Op1 Op2 Op3 Op4 Op5 Op6



54

Replicas

Put k1 v1 Put k2 v2 App k1 v1 App k2 v2

slot_out slot_in

Leader

decision(3, “App k1 v1”)

Replica

Op1 Op2 Op3 Op4 Op5 Op6



55

Replicas

Put k1 v1 Put k2 v2 App k1 v1 App k2 v2

slot_out slot_in

Replica

Leader

Op1 Op2 Op3 Op4 Op5 Op6



56

Leader

decision(4, “Put k3 v3”)

Replica

slot_out slot_in

Replicas

Put k1 v1 Put k2 v2 App k1 v1 App k2 v2

Op1 Op2 Op3 Op4 Op5 Op6



57

Leader

propose(5, “App k2 v2”)

Replica

slot_out slot_in

Replicas

Put k1 v1 Put k2 v2 App k1 v1 Put k3 v3 App k2 v2

Op1 Op2 Op3 Op4 Op5 Op6



58

Paxos Made Moderately Complex Made Simple



59

Reconfiguration

All replicas must agree on who the leaders and 
acceptors are

How do we do this?



60

Reconfiguration

All replicas must agree on who the leaders and 
acceptors are

How do we do this?

- Use the log!

- Commit a special reconfiguration command

- New config applies after WINDOW slots



61

What if we need to reconfigure now and client requests aren’t coming in?

Reconfiguration



Questions

What should be in stable storage?



Question

• What are the costs to using Paxos? Is it
practical enough?




