
Winter 2022 Term 2 (February 28, 2023)

Tony Mason (fsgeek@cs.ubc.ca), Lecturer

CPSC 416 Distributed
Systems

2

Logistics

3

Project 3 Released. Late Deadline: April 13, 2023. Report Grades Pending.

Project 4 Released. Initially Due: March 13, 2023
Project 5 Released Due: April 13, 2023

All project work is due April 13, 2023. Late projects have a 75% score cap.

Deadlines

4

Alternate Path 1 & 2: Review in progress
• Piazza private threads need TLC

• Weekly updates due each Monday @ 23:59 PT

Instructor Office Hours:
• Zoom Office Hours (Tuesday) @ 13:00-14:00
• Discord (Casual) Office Hours (Thursday) @ 14:00-15:00

TA Office Hours:
• Eric: Friday 9-11 am (in-person and Zoom)
• Japraj: Wednesday 3-5 pm (Zoom)
• Yennis: Thursday 2-4 (Zoom), Friday 2-4 (in-person)

Deadlines

5

Required:

Recommended:
• In Search of an Understandable Consensus Algorithm
• Paxos vs Raft: Have we reached a consensus on distributed consensus (Video)

Readings

https://www.usenix.org/system/files/conference/atc14/atc14-paper-ongaro.pdf
https://www.youtube.com/watch?v=0K6kt39wyH0

6

Questions about the class?

Questions about the previous lecture?

Funny stories to share?

Questions?

7

Today’s Failure

8

This is my personal experience.

Project:
• A file server
• Multiple client computers
• A storage fabric (Fibre Channel)

• Strongly interconnected
• Storage is accessible from multiple machines

Goal: Use an existing file server (SMB on a Windows Server system) but allow direct
storage usage on clients.

Taking Too Long is Bad

9

Server:
• Standard Windows Server
• SMB file server
• NTFS file system

Client:
• SMB Client (initially Windows)
• File system filter:

• Capture read and write operations
• Satisfy via direct I/O to attached storage

Taking too Long

10

Basic idea:
• File server owns metadata

• File extension
• File truncation
• Location information (tunneled IOCTL query)

• Client:
• Forwards size changing operations
• Queries file server for location (tunneled IOCTL)
• Direct I/O (read/write)

Benefit: file server is not a performance bottleneck

Taking too long

11

Simple operation:
• Client application: extend the file by 10GB
• Client: request 10GB extension on file server
• Server: request NTFS extend file by 10GB
• NTFS: zero newly allocated storage region

Problem?
• It took > 600 seconds (10 minutes) to extend the file.
• Physical disk is slow
• Zero-filled disk region
• SMB protocol would time out after 10 minutes

What took too long?

12

We fixed this by:
• Building a disk filter
• Detect when NTFS was extending
• Return immediately (do not zero disk)

Why was this OK?
• Zeroing the disk was a security features
• It was shared disk. The clients could already read it.
• Performance was more important than security

Result?
• System worked and was fast enough!

Resolution: Don’t take so long

13

Lesson Goals

14

Review Paxos

Explain Raft Protocol

Raft

15

Challenges
• How does Paxos work?
• Why does Paxos work?
• How to build a real system with Paxos?

Note: difficulty increases in that list above

Paxos Review

16

Partition: split brain challenge
• Primary and backup cannot communicate
• Clients can communicate with primary and/or backup

How to handle the failure:
• Backup self-promotes
• Risk: Primary isn’t dead
• Consistency lost

Why is Replication Difficult?

17

Scenario:
• Three replicas, no primary, no view server
• Replicas maintain operations log
• Clients send requests to subset of replicas
• Replica proposes client request for consensus
• Consensus:

• Commit operation in log
• Return result to client

State Machine Replication (Example)

18

Original Paxos
• Proposers, accepters, learners
• No leader
• Parallelism by running Paxos instance per log entry

Multi-Paxos
• Leader election (via original Paxos)
• Failure protocol: elect a new leader
• Leader handles commits (similar to 2PC)

Multi-Paxos is more popular for implementation. Project 4 is Multi-Paxos (because we
need that for Project 5)

Leaderless versus Leader

19

Each replica maintains an operations log

Client sends request to any replica

Replica initiates Paxos proposal
• Uses its latest sequence number
• Propose does not mean accepted

Proposers collect votes
• Quorum reached

• Record in log
• Return result to client

Original Paxos

20

Replica normally consists of Proposer, Accepter, and Learner

This is true for Project 4.

Practical Implementation Notes

21

Client 42:
• Sends Put(x)=42 to Server 1

Client 13
• Sends Put(x)=13 to Server 3

Cannot accept both values

We protect against partition by insisting on a quorum

Paxos: Reaching Agreement

22

Recall: Paxos tolerates f failures.

This means we need 2f+1 replicas

If n is the number of replicas, and f is the number of failures:
• Have to consider when we have f failures.
• Requires we have at least one non-failed case left

𝑛𝑛 − 𝑓𝑓 − 𝑓𝑓 ≥ 1 ⇒ 𝑛𝑛 ≥ 2𝑓𝑓 + 1

Why Quorum Matters

23

Raft

24

Follower time-out: Call Election

Leader candidates “declare”
• Term Number
• Log Index
• (Isn’t this just a view proposal?)

All nodes vote (“accepters”)

Raft: Leader Election Protocol

25

Property 1: At most one leader per term

Rule 1: Leader has Quorum (“majority”)
• New term, Candidate becomes leader

Rule 2: Block old leaders
• Node: only vote for a candidate if their log is newer
• Could be same term number: log just longer
• Higher term number: new log
• Losing candidate: just another follower

Rule 3:
• No winner/network partition? Try again
• Random timeouts to minimize split vote risk

RAFT Leader Election Rules

26

Raft Log Replication

27

Raft Log Replication

28

Step 1: Leader pushes new log entry + previous entry to followers (heartbeat)

Step 2: If follower has previous log entry: sends ack to leader

Step 3: Leader commits log entry once has quorum; send ack to client

Note: outdated followers catch up via heartbeat.

Raft Log Replication

29

Raft Log Replication

30

Append only

Log matching:
• If two entries in different logs have same index and term, all entries up to this point are

the same.

Inconsistency:
• New leader does not know uncommitted log entries
• All followers must use new leader’s log
• Leader election algorithm ensures new leader knows all committed logs

New leader commits uncommitted logs from previous terms after committing at least one log from
current term.

Raft Leader Properties

31

Log length grows
• Execution duration
• Nodes falling behind

Garbage collection:
• Snapshot
• Log truncation

Recovery Optimization:
• Leader sends snapshot

via heartbeat

Raft: Garbage Collection

32

Property: Leader complete
• Log entires not overwritten after commit

Property: State machine safety
• Log entry never overwritten in a node (see paper for formal proof)

Raft Safety

33

Visualization(s)

http://thesecretlivesofdata.com/raft/
https://raft.github.io/

34

Lesson Review

35

Paxos Review

Observe: Raft is Multi-Paxos (and Viewstamped Replication)

RAFT

36

Questions?

	CPSC 416 Distributed Systems
	Logistics
	Deadlines
	Deadlines
	Readings	
	Questions?
	Today’s Failure
	Taking Too Long is Bad
	Taking too Long
	Taking too long
	What took too long?
	Resolution: Don’t take so long
	Lesson Goals
	Raft
	Paxos Review
	Why is Replication Difficult?
	State Machine Replication (Example)
	Leaderless versus Leader
	Original Paxos
	Practical Implementation Notes
	Paxos: Reaching Agreement
	Why Quorum Matters
	Raft
	Raft: Leader Election Protocol
	RAFT Leader Election Rules
	Raft Log Replication
	Raft Log Replication
	Raft Log Replication
	Raft Log Replication
	Raft Leader Properties
	Raft: Garbage Collection
	Raft Safety
	Visualization(s)
	Lesson Review
	RAFT
	Questions?
	Click to edit Master title style

