
Winter 2022 Term 2 (February 28, 2023)

Tony Mason (fsgeek@cs.ubc.ca), Lecturer

CPSC 416 Distributed 
Systems
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Logistics
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Project 3 Released. Late Deadline: April 13, 2023. Report Grades Pending.

Project 4 Released. Initially Due: March 13, 2023
Project 5 Released Due: April 13, 2023

All project work is due April 13, 2023.  Late projects have a 75% score cap.

Deadlines
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Alternate Path 1 & 2: Review in progress
• Piazza private threads need TLC

• Weekly updates due each Monday @ 23:59 PT

Instructor Office Hours:
• Zoom Office Hours (Tuesday) @ 13:00-14:00
• Discord (Casual) Office Hours (Thursday) @ 14:00-15:00

TA Office Hours:
• Eric: Friday 9-11 am (in-person and Zoom)
• Japraj: Wednesday 3-5 pm (Zoom)
• Yennis: Thursday 2-4 (Zoom), Friday 2-4 (in-person)

Deadlines
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Required:

Recommended:
• In Search of an Understandable Consensus Algorithm
• Paxos vs Raft: Have we reached a consensus on distributed consensus (Video)

Readings

https://www.usenix.org/system/files/conference/atc14/atc14-paper-ongaro.pdf
https://www.youtube.com/watch?v=0K6kt39wyH0
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Questions about the class?

Questions about the previous lecture?

Funny stories to share?

Questions?
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Today’s Failure
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This is my personal experience.

Project:
• A file server
• Multiple client computers
• A storage fabric (Fibre Channel)

• Strongly interconnected
• Storage is accessible from multiple machines

Goal: Use an existing file server (SMB on a Windows Server system) but allow direct 
storage usage on clients.

Taking Too Long is Bad
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Server:
• Standard Windows Server
• SMB file server
• NTFS file system

Client:
• SMB Client (initially Windows)
• File system filter:

• Capture read and write operations
• Satisfy via direct I/O to attached storage

Taking too Long
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Basic idea:
• File server owns metadata

• File extension
• File truncation
• Location information (tunneled IOCTL query)

• Client:
• Forwards size changing operations
• Queries file server for location (tunneled IOCTL)
• Direct I/O (read/write)

Benefit: file server is not a performance bottleneck

Taking too long
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Simple operation:
• Client application: extend the file by 10GB
• Client: request 10GB extension on file server
• Server: request NTFS extend file by 10GB
• NTFS: zero newly allocated storage region

Problem?
• It took > 600 seconds (10 minutes) to extend the file.
• Physical disk is slow
• Zero-filled disk region
• SMB protocol would time out after 10 minutes

What took too long?
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We fixed this by:
• Building a disk filter
• Detect when NTFS was extending
• Return immediately (do not zero disk)

Why was this OK?
• Zeroing the disk was a security features
• It was shared disk.  The clients could already read it.
• Performance was more important than security

Result?
• System worked and was fast enough!

Resolution: Don’t take so long
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Lesson Goals
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Review Paxos

Explain Raft Protocol

Raft
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Challenges
• How does Paxos work?
• Why does Paxos work?
• How to build a real system with Paxos?

Note: difficulty increases in that list above

Paxos Review
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Partition: split brain challenge
• Primary and backup cannot communicate
• Clients can communicate with primary and/or backup

How to handle the failure:
• Backup self-promotes
• Risk: Primary isn’t dead
• Consistency lost

Why is Replication Difficult?
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Scenario:
• Three replicas, no primary, no view server
• Replicas maintain operations log
• Clients send requests to subset of replicas
• Replica proposes client request for consensus
• Consensus:

• Commit operation in log
• Return result to client

State Machine Replication (Example)
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Original Paxos
• Proposers, accepters, learners
• No leader
• Parallelism by running Paxos instance per log entry

Multi-Paxos
• Leader election (via original Paxos)
• Failure protocol: elect a new leader
• Leader handles commits (similar to 2PC)

Multi-Paxos is more popular for implementation.  Project 4 is Multi-Paxos (because we 
need that for Project 5)

Leaderless versus Leader
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Each replica maintains an operations log

Client sends request to any replica

Replica initiates Paxos proposal
• Uses its latest sequence number
• Propose does not mean accepted

Proposers collect votes
• Quorum reached

• Record in log
• Return result to client

Original Paxos
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Replica normally consists of Proposer, Accepter, and Learner

This is true for Project 4.

Practical Implementation Notes
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Client 42:
• Sends Put(x)=42 to Server 1

Client 13
• Sends Put(x)=13 to Server 3

Cannot accept both values

We protect against partition by insisting on a quorum

Paxos: Reaching Agreement
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Recall: Paxos tolerates f failures.

This means we need 2f+1 replicas

If n is the number of replicas, and f is the number of failures:
• Have to consider when we have f failures.
• Requires we have at least one non-failed case left

𝑛𝑛 − 𝑓𝑓 − 𝑓𝑓 ≥ 1 ⇒ 𝑛𝑛 ≥ 2𝑓𝑓 + 1

Why Quorum Matters
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Raft
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Follower time-out: Call Election

Leader candidates “declare”
• Term Number
• Log Index
• (Isn’t this just a view proposal?)

All nodes vote (“accepters”)

Raft: Leader Election Protocol
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Property 1: At most one leader per term

Rule 1: Leader has Quorum (“majority”)
• New term, Candidate becomes leader

Rule 2: Block old leaders
• Node: only vote for a candidate if their log is newer
• Could be same term number: log just longer
• Higher term number: new log
• Losing candidate: just another follower

Rule 3: 
• No winner/network partition?  Try again
• Random timeouts to minimize split vote risk

RAFT Leader Election Rules
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Raft Log Replication
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Raft Log Replication
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Step 1: Leader pushes new log entry + previous entry to followers (heartbeat)

Step 2: If follower has previous log entry: sends ack to leader

Step 3: Leader commits log entry once has quorum; send ack to client

Note: outdated followers catch up via heartbeat.

Raft Log Replication
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Raft Log Replication
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Append only

Log matching:
• If two entries in different logs have same index and term, all entries up to this point are 

the same.

Inconsistency:
• New leader does not know uncommitted log entries
• All followers must use new leader’s log
• Leader election algorithm ensures new leader knows all committed logs

New leader commits uncommitted logs from previous terms after committing at least one log from 
current term.

Raft Leader Properties
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Log length grows
• Execution duration
• Nodes falling behind

Garbage collection:
• Snapshot
• Log truncation

Recovery Optimization:
• Leader sends snapshot

via heartbeat

Raft: Garbage Collection
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Property: Leader complete
• Log entires not overwritten after commit

Property: State machine safety
• Log entry never overwritten in a node (see paper for formal proof)

Raft Safety
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Visualization(s)

http://thesecretlivesofdata.com/raft/
https://raft.github.io/
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Lesson Review
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Paxos Review

Observe: Raft is Multi-Paxos (and Viewstamped Replication)

RAFT
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Questions?
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