
Winter 2022 Term 2 (February 7, 2023)

Tony Mason (fsgeek@cs.ubc.ca), Lecturer

CPSC 416 Distributed
Systems

2

Logistics

3

Project 2 Report: Pending Review

Project 3 Released. Initially Due: February 13, 2023. Next Monday
Project 4 Released. Initially Due: March 13, 2023
Project 5 Released Due: April 13, 2023

All project work is due April 13, 2023. Late projects have a 75% score cap.

Deadlines

4

Alternate Path 1 & 2: Review in progress
• Piazza private threads created

• Review
• Respond to outstanding questions

• Proceed according to your plan.

Instructor Office Hours:
• Zoom Office Hours (Tuesday) @ 13:00-14:00
• Discord (Casual) Office Hours (Thursday) @ 14:00-15:00

Deadlines

5

Required:

Recommended:
• Corfu: a distributed shared log
• Serverless Network File Systems
• Distributed Logging for Transaction Processing
• EngraveChain: A Blockchain-Based Tamper-Proof Distributed Log System
• Pensieve: Non-Intrusive Failure Reproduction for Distributed Systems using

Event Chaining Approach

Readings

https://dl.acm.org/doi/abs/10.1145/2535930
https://lazowska.cs.washington.edu/xfs.pdf
https://dl.acm.org/doi/pdf/10.1145/38714.38728
https://www.mdpi.com/1999-5903/13/6/143
https://www.eecg.utoronto.ca/%7Eyuan/papers/pensieve-sosp17.pdf

6

Questions about the class?

Questions about the previous lecture?

Funny stories to share?

Questions?

7

Today’s Failure

8

Event start: June 2, 2019 @ 11:45 PT
Event ends: June 2, 2019 @ 15:40 PT

TL;DR Version
• Network connectivity issues
• Degrade/Disrupt

• Compute Engine (up to 33% packet loss)
• App Engine (23.2% decrease in requests per second) – many timeouts
• Cloud Endpoints – 50% of service configuration push workflows failed
• Cloud Interconnect – packet loss up to 100%
• Cloud VPN – multiple gateways unreachable
• Cloud Console – slow/failed page loads
• Etc. (6 more impacted services including G Suite)

Google Cloud Platform

9

Two “normally benign” misconfigurations

One software bug

(1) Network control plane jobs configured to be stopped for maintenance event
(2) Cluster management software instances included in “relatively rare mainentance

event”
(3) Maintenance event software initiator bug: allows descheduling multiple independent

software clusters at the same time. Clusters were geographically distributed.

Cause

10

Network data plane continues to run without control plane presence.

BGP routing stopped: connectivity interrupted (“can’t get there from here”)

Google engineering knew of the issue within two minutes.
Tools don’t work: “Debugging the problem was significantly hampered by failure of tools
competing over use of the now-congested network.”

Mitigations

11

When your communications fail…

“The defense in depth philosophy means we have robust backup plans for handling failure
of such tools, but use of these backup plans (including engineers travelling to secure
facilities designed to withstand the most catastrophic failures, and a reduction in priority of
less critical network traffic classes to reduce congestion) added to the time spent
debugging. Furthermore, the scope and scale of the outage, and collateral damage to
tooling as a result of network congestion, made it initially difficult to precisely identify
impact and communicate accurately with customers.”

Mitigations

12

Cascading failures – again. This is a common (and recurring theme) in distributed
systems failures.

Recovery

13

Lesson Goals

14

Review: transactions

Types of Logs

How Logs implement Transactions

Centralized Logs

Distributed Logs

Distributed Logging

15

Review: Transaction

Start:
Durable,

Consistent

Operations:
get, put,
delete

End:
Durable,

Consistent
write

Read

Write

abort

commit

16

Transactions provide:
• Atomicity of multiple distinct operations
• Consistent state (beginning/end)
• Isolation (intermediate states are not visible)
• Durable (outcome is preserved)

Note: in the “real world” we often explore different ways of realizing these

Transactions

17

Record persistent information
• Enables recovery (and abort)

Logging types
• Redo – roll forward (data mutations blocked until commit)
• Undo – roll back (log written before data mutations written)
• Write-ahead – combines undo/redo loggin

Logs

18

Logs provide a serialized version of events

Tracking distributed state (vector clock) permits disjoint logs to be combined.
• Recall: serialization doesn’t have to be the order it is just one possible order
• Ordering is “flexible” iff outcome is the same.

Why Logs?

19

1979 – IBM Technical Report
• Transaction Logs
• 2 Phase Commit
• Undo/Redo Recovery

Undo/Redo Logging

https://fsgeek.ca/wp-content/uploads/2023/02/1979-The-Recovery-Manager-of-a-Data-Management-System.pdf

20

Goal: use undo and redo logging to ease write-back rules

Steps:
1. Start transaction
2. Write old values to log
3. Modify the data
4. Write new values to log
5. Commit transaction
6. Write data to disk
7. Truncate record (no longer needed)

Write-Ahead Logging

21

After restart
• Find head of log: most recent transaction
• Find tail of log: oldest active transaction
• For transactions with a commit but not truncated: write new values
• For transactions without a commit: write old values

Truncation occurs when:
• All data changes in a given transaction have been recorded.
• Can be lazy

Note: recovery must do undo before redo.

Recovery

22

At least one log must define transaction outcome (commit/abort)
• Note: one log becomes a “single point of failure”
• Could use chain replication for redundancy

Coordinator handles distributed transactions
• Transaction identifier (TID) created – links transactions across nodes
• Knows all transaction participants
• Provides atomic commit
• Logs outcomes – used for recovery

Distributed Logs

23

Coordinator
• Begin Transaction
• Commit Transaction
• Abort Transaction

Messages between Nodes and Coordinators
• Node to Coordinator: request to commit
• Coordinator to all Nodes: prepare to commit
• Node to Coordinator: prepared/aborted
• Coordinator to Nodes: committed/aborted

Log: 2PC

24

Phase 1: Voting
• Node sends request to commit
• Coordinator sends prepare to commit
• Nodes prepare the request (write to their own log)

Phase 2: Transaction completion
• Coordinator: waits for all

Nodes to answer
• Coordinator: writes commit

to log
• Coordinator: tells Nodes

the outcome
• Node: commits (writes to

log)

Two-Phase Commit Walk-through

25

Coordinator
• Uses timeout mechanism
• Aborts pending transactions dependent upon the failed Node

Node
• Recovers log

• Log records without a prepare to commit: abort
• Log records with a prepare to commit, no commit/abort:

• Query Coordinator for outcome
• What if the Coordinator is unavailable?

Node Recovery

26

2PC Commit (In flight)

27

Node sending commit request:
• Timeout is a failure
• Abort transaction in local log

Node sends prepared response
• Timeout if no committed/aborted received
• Transaction outcome is indeterminate

• Must ask Coordinator
• What if Coordinator is permanently lost?

As I noted: single Coordinator becomes a single point of failure.

Coordinator Failure

28

Coordinator permanent failure is catastrophic
• Could replicate the coordinator log

Two possible approaches:
• Use quorum replication (Daniels, Spector, Thompson)

• Multiple log servers
• Distributed replication: weaker than chain replication
• Coordinator is a single client

• Global shared log
• Replication
• Parallelism
• Garbage collection via sparseness (“trim”)

Replicated Log

29

Distributed Log
• Abstraction is a single log
• Append-only
• Sparse (“Trim”) – Compaction
• Write-Once (atomic write)
• Space Reservation (collison

avoidance) – Optional
• Block level replication (chain)

Infinitely growing log
• Maps virtual to physical locations
• Deletes unneeded storage

Global Log (Corfu)

30

Strong audit requirements
• Payment Card Industry (PCI) standards
• General Data Protection Regulation (GDPR)
• Health Care (PIPA & HIPPA)

Strong requirements
• Distributed
• Byzantine fault tolerant

EngraveChain
• Distributed, chained log (“block chain”) using Practical Byzantine Fault Tolerance

Tamper-Proof Log

https://sands.kaust.edu.sa/classes/CS240/F17/papers/bft.pdf

31

Write logs to blockchain
• Encrypt log with peer key
• Insert encrypted file into

blockchain

Recover
• Linearized list of blocks
• Ask peer to decrypt

Can use hash of file contents for
large files.

EngraveChain

32

Lesson Summary

33

Mechanism for building distributed transaction

Undo/redo logs

Distributed Logs

Global Logs

Secure Logs

Distributed Logging

34

Questions?

	CPSC 416 Distributed Systems
	Logistics
	Deadlines
	Deadlines
	Readings	
	Questions?
	Today’s Failure
	Google Cloud Platform
	Cause
	Mitigations
	Mitigations
	Recovery
	Lesson Goals
	Distributed Logging
	Review: Transaction
	Transactions
	Logs
	Why Logs?
	Undo/Redo Logging
	Write-Ahead Logging
	Recovery
	Distributed Logs
	Log: 2PC
	Two-Phase Commit Walk-through
	Node Recovery
	2PC Commit (In flight)
	Coordinator Failure
	Replicated Log
	Global Log (Corfu)
	Tamper-Proof Log
	EngraveChain
	Lesson Summary
	Distributed Logging
	Questions?
	Click to edit Master title style

