
Winter 2022 Term 2 (February 2, 2023)

Tony Mason (fsgeek@cs.ubc.ca), Lecturer

CPSC 416 Distributed
Systems

2

Logistics

3

Project 2 Report: Pending Review

Project 3 Released. Initially Due: February 13, 2023.
• Note repo was updated February 1. (Minor README updates)

Project 4 Released. Initially Due: March 13, 2023
Project 5 Released Due: April 13, 2023

All project work is due April 13, 2023. Late projects have a 75% score cap.

Deadlines

4

Alternate Path 1 & 2: Proposal was due January 30, 2023.
• Review in progress
• Piazza private threads created

• Review
• Respond to outstanding questions

• Proceed according to your plan.

Instructor Office Hours:
• Zoom Office Hours (Tuesday) @ 13:00-14:00
• Discord (Casual) Office Hours (Thursday) @ 14:00-15:00

Deadlines

5

Required:

Recommended:
• Spanner: Google’s globally distributed database
• A low-cost atomic commit protocol
• BigTable: A distributed storage system for structured data
• Megastore: Providing scalable, highly available storage for interactive services
• The part-time parliament
• Viewstamped replication: A new primary copy method to support highly-available

distributed systems.
• From Viewstamped Replication to Byzantine Fault Tolerance

Readings

https://dl.acm.org/doi/pdf/10.1145/2491245
https://ieeexplore.ieee.org/abstract/document/93952
https://www.usenix.org/legacy/event/osdi06/tech/chang/chang.pdf
https://research.google/pubs/pub36971https:/research.google/pubs/pub36971.pdf.pdf
https://dl.acm.org/doi/pdf/10.1145/279227.279229
https://dl.acm.org/doi/pdf/10.1145/62546.62549
https://courses.cs.washington.edu/courses/cse550/21au/papers/CSE550.ViewStampedReplication.pdf

6

Questions about the class?

Questions about the previous lecture?

Funny stories to share?

Questions?

7

Today’s Failure

8

February 28, 2017 09:37 PT

AWS S3 is an “object store” service
• Provides a key/value web interface

• PUT
• GET
• DELETE

Used for many services including:
• Netflix
• Reddit
• Pinterist

Amazon Web Services (S3)

9

“The Amazon Simple Storage Service (S3) team was debugging an issue causing the S3 billing
system to progress more slowly than expected. At 9:37AM PST, an authorized S3 team member
using an established playbook executed a command which was intended to remove a small
number of servers for one of the S3 subsystems that is used by the S3 billing process.
Unfortunately, one of the inputs to the command was entered incorrectly and a larger set of
servers was removed than intended.”

Oops…

AWS S3 Outage

10

“The servers that were inadvertently removed supported two other S3 subsystems. One of these
subsystems, the index subsystem, manages the metadata and location information of all S3 objects
in the region. This subsystem is necessary to serve all GET, LIST, PUT, and DELETE requests. The
second subsystem, the placement subsystem, manages allocation of new storage and requires the
index subsystem to be functioning properly to correctly operate. The placement subsystem is used
during PUT requests to allocate storage for new objects. Removing a significant portion of the
capacity caused each of these systems to require a full restart. While these subsystems were being
restarted, S3 was unable to service requests. Other AWS services in the US-EAST-1 Region that rely
on S3 for storage, including the S3 console, Amazon Elastic Compute Cloud (EC2) new instance
launches, Amazon Elastic Block Store (EBS) volumes (when data was needed from a S3 snapshot),
and AWS Lambda were also impacted while the S3 APIs were unavailable. “
Big impact

AWS S3 Outage

11

Service fully restored 13:54 PT.
Total disruption: 4:14!
Well, sort of… (“some … services had accumulated a backlog of work during the S3
disruption and required additional time to fully recover.”)

“From the beginning of this event until 11:37AM PST, we were unable to update the individual services’
status on the AWS Service Health Dashboard (SHD) because of a dependency the SHD administration
console has on Amazon S3. Instead, we used the AWS Twitter feed (@AWSCloud) and SHD banner text to
communicate status until we were able to update the individual services’ status on the SHD. We
understand that the SHD provides important visibility to our customers during operational events and we
have changed the SHD administration console to run across multiple AWS regions.”

Their own notification service was unavailable!

AWS S3 Outage

12

Lessons:
• Manual interventions are high risk
• Things do not work as expected
• Failure of a system can lead to unintended secondary failures
• It is essential to do root-cause analysis, identify problems, fix the problems

• Note there is a social aspect here (“failure is expected, learn from it, fix it,
grow”)

• Create a culture of review and improvement, not blame

Summary of the Amazon S3 Service Disruption in the Northern Virginia (US-EAST-1) Region

AWS S3 Outage

https://aws.amazon.com/message/41926/

13

Lesson Goals

14

Consistency

Distributed Transaction Implementation Approaches
• 2-phase commit
• 2-phase locking
• Truetime
• Relaxed consistency (“eventual”)

Examples
• Google Spanner
• AWS Aurora
• CockroachDB

Distributed Transactions

15

Transaction

Start:
Durable,

Consistent

Operations:
get, put,
delete

End:
Durable,

Consistent
write

Read

Write

abort

commit

16

Transactions provide:
• Atomicity of multiple distinct operations
• Consistent state (beginning/end)
• Isolation (intermediate states are not visible)
• Durable (outcome is preserved)

Note: in the “real world” we often explore different ways of realizing these

Transactions

17

Transactions implemented across systems

Distributed Transactions

18

Coordinator + Multiple nodes

Nodes – store state
• Typically mutable
• Participates in some transactions

Coordinator
• Leader
• Determines outcome
• Involved in one or more

transaction

Distributed Transaction

19

Google’s relational database service
• Internal Google Services
• External Cloud DB services
• Applications

Spanner

20

Global data store
• Geographically distributed
• Sharded
• Replicated

Google’s relational database service
• Internal services
• External Cloud DB
• Applications

Spanner

21

Distributed persistent storage
• Google Filesystem
• Colossus

Data model
• Versioned key-value store (BigTable)
• Tablet, directory (related objects)
• Relational database (Megastore)

Replicated state machine (per tablet) using Paxos

2-phase locking (concurrency control)

2-phase commit (cross-replica set transactions)

Spanner: Technology Stack

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/035fc972c796d33122033a0614bc94cff1527999.pdf
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system

22

Single Machine Consistency

23

Multi-machine Multi-datacenter Consistency

24

External consistency matters
• System ordering of events

= “real world” ordering of
events

• Tx1 commits before Tx2
then Tx2 must see Tx1’s
writes

This is serializability

How to achieve?

Consistency Matters!

25

TrueTime != absolute “real” time

TrueTime is a bounded uncertainty around
real time

Probe master clocks periodically
• Master clocks are “close”
• Master clocks are highly accurate

• Use GPS
• Use atomic clocks

• Bound is 2𝜖𝜖

Google TrueTime

https://www.gps.gov/applications/timing/
https://www.nasa.gov/feature/jpl/what-is-an-atomic-clock

26

Timestamps and TrueTime

27

Commit and Wait Replication

28

Combine 2PC with Commit Wait

29

Example (“Risky Post”)

30

Use timestamp for reading
• Timestamp is a version

No distributed cut required
• Use timestamp to obtain correct version

Read Transactions

31

GPS/Atomic clocks
• Short windows (5-7 milliseconds)
• Delay response

NTP
• Longer window: ~100 milliseconds
• Wait?
• Sacrifice external consistency?
• Allow external consistency when needed (wait!)

CockroachDB:
• Default is eventual consistency
• Optional external consistency

TrueTime is not required

https://github.com/cockroachdb/cockroach

32

Optimistic Concurrency Control (OCC)
Requires Atomicity (ACID)
Requires Isolation (ACID)

Snapshot isolation
Multi-version concurrency control

Correctness guaranteed:
• Transactions read from a version (snapshot) of distributed state
• Sequence of snapshots is sterializable (no cycle)

Snapshot Isolation

33

SIGMOD 2015

Primary/Backups Model

High Availability:
• Two nodes in a zone
• Three zones
• Quorum replication model

Expensive: 6 replicas I/O amplification!

Amazon Web Services Aurora

https://web.stanford.edu/class/cs245/readings/aurora.pdf
https://www.andrew.cmu.edu/course/15-440/assets/READINGS/gifford79.pdf

34

AWS Aurora (versus MySQL)

35

Lesson Summary

36

Multiple techniques for Distributed Transactions

Google Spanner: using most of the tools in our toolbox
• Paxos
• 2PC
• 2PL
• TrueTime

Other Systems:
• Optimistic concurrency control
• Snapshot isolation
• Multi-version concurrency control
• Log replication

Distributed Transactions

37

Questions?

	CPSC 416 Distributed Systems
	Logistics
	Deadlines
	Deadlines
	Readings	
	Questions?
	Today’s Failure
	Amazon Web Services (S3)
	AWS S3 Outage
	AWS S3 Outage
	AWS S3 Outage
	AWS S3 Outage
	Lesson Goals
	Distributed Transactions
	Transaction
	Transactions
	Distributed Transactions
	Distributed Transaction
	Spanner
	Spanner
	Spanner: Technology Stack
	Single Machine Consistency
	Multi-machine Multi-datacenter Consistency
	Consistency Matters!
	Google TrueTime
	Timestamps and TrueTime
	Commit and Wait Replication
	Combine 2PC with Commit Wait
	Example (“Risky Post”)
	Read Transactions
	TrueTime is not required
	Snapshot Isolation
	Amazon Web Services Aurora
	AWS Aurora (versus MySQL)
	Lesson Summary
	Distributed Transactions
	Questions?
	Click to edit Master title style

