CPSC 416 Distributed
Systems

Winter 2022 Term 2 (February 14, 2023)

Tony Mason (fsgeek@cs.ubc.ca), Lecturer

Logistics

Deadlines

Project 3 Released. Late Deadline: April 13, 2023 (except for academic concession

cases). Grades pending. ﬁ

Project 4 Released. Initially Due: March 13, 2023
Project 5 Released Due: April 13, 2023

All project work is due April 13, 2023. Late projects have a 75% score cap.

Deadlines

Alternate Path 1 & 2: Review in progress
» Piazza private threads need TLC
* Weekly updates due each Monday @ 23:59 PT

Instructor Office Hours:
« Zoom Office Hours (Tuesday) @ 13:00-14:00
» Discord (Casual) Office Hours (Thursday) @ 14:00-15:00

TA Office Hours:
» Eric: Friday 9-11 am (in-person and Zoom)
+ Japraj: Wednesday 3-5 pm (Zoom)
* Yennis: Thursday 2-4 (Zoom), Friday 2-4 (in-person)

Readings
Required:

Recommended:
e The Part-Time Parliament

 Large-scale cluster management at Google with Borg
« Paxos & Computer Agreement (video)
 Understanding Paxos (Bloqg)

 Essential Paxos (Python/Java)

https://dl.acm.org/doi/pdf/10.1145/279227.279229
https://dl.acm.org/doi/abs/10.1145/2741948.2741964
https://youtu.be/s8JqcZtvnsM
https://understandingpaxos.wordpress.com/
https://github.com/cocagne/paxos

Questions?

Questions about the class?
Questions about the previous lecture?

Funny stories to share?

Rackspace Ransomware Outage

Event start: December 2, 2022
Event ends: ? FWE

TL;DR Version
* Rackspace Experienced a ransomware attack (Exchange)
« Solution? Tell customers to move to Microsoft Hosted Exchange
« This effectively ended Rackspace’s Hosted Exchange business (US$30m/yr)

‘On Friday, Dec 2, 2022, we became aware of an issue impacting our Hosted Exchange
environment. We proactively powered down and disconnected the Hosted Exchange
environment while we triaged to understand the extent and the severity of the impact.
After further analysis, we have determined that this is a security incident.”

Lesson Goals

Quorum Consensus

Goals of Distributed Consensus
Transactional Commit
2 Phase Commit

3 Phase Commit

Paxos

Cc
o
0

i

10

Consensus

Processes propose values, choose values, and learn values chosen
Type of roles or participants: proposers, acceptors, learners E—""‘i. l-- A
In principle each node may have all roles

l Safety
Only a value that has been proposed is chosen
—_— Only a single value is chosen and only a chosen value is learnt

Liveness
Some proposed value is chosen
Any chosen value is learnt

FLP Impossibility
Cannot have both safety and liveness

11

2 Phase Commit

Coordinator Participant _|J

B Begin Prepare (vote request)

Vote =

collection Vote Phase 1

phase H--
""""""" Decision |||~ ~

Decision

phase. Ack Phase 2

Blocking, no liveness

3 Phase Commit

Coordinator

Participant J-

B IBeginI canCommit?
Soliciting Ves —»
votes... <

Commit preCommit
authorized. —
Timeout causes ACK

abort. ‘

Finalizing | doCommit |
commit. _ —
Timeout causes haveCommitted

o [e

Phase 1

Phase 2

Phase 3

Assumes fail-stop, safety issues

on fail-restart

Paxos

Lakka
Adkka

Longos
Adyyog

Paxos

The part-time parliament
« Submitted to ACM Transactions on Computer Systems (TOCS) in 1990
* Accepted/Published in 1998

Cc
o
0

i

Describes a (mythical) Greek legislature and their system of asynchronous consensus

15

Paxon Parliament

Parliament members:

Pass decrees (decisions)
Work only part-time
Communicate only via messages
Messages are not guaranteed

* Delay

* Not sent (“abstain”)
No malicious actors

Paxos Rules

Algorithm specifies a state machine
+ Define states
» Define transitions based upon messages (“events”)

Consistency
* Only proposed decisions (“values”) can be chosen
« All participants (“nodes”) agree (“single value”)
» Participants only learn a value is chosen ifit has been (“durability”)

Paper proves the parliament functions properly
* Decisions are consistent

Paxos Made Simple

Lamport’s 2001 update

No Greek parliament

No olive tree price agreements

No synods

No fun

https://www.microsoft.com/en-us/research/publication/paxos-made-simple/

Paxos Made Simple

Same model

Asynchronous

Non-Byzantine

Agents act at their own (arbitrary) speed

Agents may fail (“stop”)

Agents may recover from failure (“restart”)

Messages are unreliable

Arbitrarily long delivery
Duplicated

Lost

No guaranteed order
No message corruption

UB

0

€

19

Key Ideas

r’ Majority Quorum:
Each decision is %
based on a majority

quorum, two 000

quorums are
State Machine guaranteed to have Ordering:

Replication: Intersecting Everything is

Each node is a mimbers, Sg . timestamped (so it
consensus decision can be ordered)

replica of the same can be disseminated _
state machine Needed so it can

(algorithm) following Needed so it can tolerate arbitrary

the same rules ’;Z:ﬁjrfg: tail-restart message delays

Paxos Phases

Prepare: Node proposes an “agreement” — propose a value/outcome
Accept: Collect votes to

* Determine if an agreement is possible

* Determine a value/outcome
Learn: All nodes can learn the value/outcome

Can be done in two rounds of messages

Proposal number is part of the messages
« Can handle fail-restart and delayed messages

Phase 1: Prepare

A node (the “leader”):
» Selects a proposal number n
« nis from a totally ordered set of numbers across nodes
 Example: There are m nodes, a node ¢ € {1, ..., m} uses mi + ¢,i € Z
* No number is ever used twice
* Sends a prepare request with the number n to a majority of voting nodes
(“acceptors”)

Acceptor:
» If a prepare request receives a proposal number n larger than any it has seen:
* |t responds with a promise not to accept new proposals less than n and the
highest numbered proposal it has previously accepted.

Proposal: Example (1)

Proposer

v_default = “foo”

Accepters

< N

Learners

Proposal: Example (2)

Proposer

<

v_default = “foo”

Accepters

If majority received,

v = max(Proposals) or v_default

ResponseToPrepareRequest [None]

Learners

24

Phase 2: Accept

If the Proposer receives a response from a majority of acceptors:

Cc
o
0

« Sends an accept request to each acceptor

i

* Proposal number (n)
» Value/outcome (v)
« The highest-numbered proposal in the responses
» Distinguished value for “no proposal’ (e.g., this is the first one)

An Acceptor receives an accept request for proposal n:

« Ifit has not seen a higher numbered proposal, it accepts
« Ifit has seen a higher numbered proposal, it doesn’t accept (“drop it”).

A

Acceptors: Example

Proposer

Prepare [1]

v_default = “foo”

Accepters

<

If majority received,

v = max(Proposals) or v_default

Commit [1, “f00”]

Learners

Phase 3: Learn

Accepted value becomes decided value.
* Achieved quorum
* Visible to learners

Pick one or more distinguished learners
» Acceptors notify learners of accepted proposals

« Distinguished learners knows it is decided because it is visible to a majority of
acceptors (“quorum?”)

» Distinguished learners tell other learners

More distinguished learners = higher reliability at higher communications cost/complexity

Learners: Example

Proposer | v_default = “foo”

Accepters

Prepare [1]

If majority received, o
v = max(Proposals) or v_default

Commit[1, “f00”]

Learners BC

Decision [1, “fo0”]

> >
Once
- p| majority
received,
» notify

client

Edge Cases

Proposers with different values
« Can only choose one!
* Ignore lower numbered proposal.

UB

0

€

29

Challenging Cases: Different Values Proposed

Proposer 1 | v_default = “foo” | Proposer 2 | v_default = “bar” | Accepters

Prepare [2] -

Agree [None]

A 4

Agree [None]

Agree [None]

Prepare [1] >

1 <2, soignore

If majority received,
v = max(Proposals) or v_default

v

Commit [2, “bar”]

\ J

Accepted, notify
Learners

Challenging Cases: Different Values Proposed

Proposer 1

Prepare [1]

v_default = “foo”

Proposer 2

v_default = “bar”

Accepters

A 4

A A

Agree [None]

Agree [None]

If majority received,
v = max(Proposals) or v_default

Commit [2, “bar”]

1 1<2, soignore

A 4

Accepted, notify

\ 4

Learners

Liveness Challenges

Race between proposers

Proposer 1 issues message 1: “prepare X”

Proposer 2 issues message 2: “prepare Y~

Keep sending higher numbered proposals
* No guarantee a decision is reached

Solutions:
 Randomize delay time
» Choose a leader (with timeouts for leader)
* Heuristic solutions might not work (FLP)

UB

0

€

32

Multi-Paxos

Single-Paxos agrees on a single value

» Example: ID of the lock owner ()

Multi-Paxos:
» Agrees on order of sequence of multiple values
» Part of The Part-time Parliament
« Multiple inflight exchanges, voting, etc.

Cc
o
0

i

33

https://static.googleusercontent.com/media/research.google.com/en/archive/chubby-osdi06.pdf

Multi-Paxos

Optimization:
+ Select leader for a “view”
« All values in the view get accepted (and then learned) per Paxos
* Must detect and act upon view changes

Similar to Viewstamped Replication

See also Viewstamped Replication Revisited

https://pmg.csail.mit.edu/papers/vr.pdf
https://www.pmg.csail.mit.edu/papers/vr-revisited.pdf

Using Paxos

Digital Equipment Corporation Systems Research Center (“DEC SRC")

 Petal
« Frangipani

 Note: both used Paxos

Google Chubby

Zookeeper Atomic Broadcast (ZAB)

https://dl.acm.org/doi/10.1145/237090.237157
https://dl.acm.org/doi/10.1145/268998.266694
https://disco.ethz.ch/courses/hs08/seminar/papers/osdi06-google-chubby.pdf
https://zdq0394.github.io/papers/zab.pdf

Paxos: Widely Used and Improved

.Disk Paxos
» Cheap Paxos » Stoppable Paxos
: @Fast Paxos : © Mencius » EPaxos
i ©OGeneralized i i gVertical Paxos
: i Paxos A
» Paxos
c P, T3 L
) & &S F S &
N e P D P P P %

Many research papers
 Paxos made live
 Paxos made transparent
 Paxos made moderately complex

Paxos in Action (animation)

https://read.seas.harvard.edu/%7Ekohler/class/08w-dsi/chandra07paxos.pdf
https://dl.acm.org/doi/abs/10.1145/2815400.2815427
https://paxos.systems/
http://harry.me/blog/2014/12/27/neat-algorithms-paxos/

Lesson Review

Paxos

Asynchronous Agreement Protocol
« Basic model: Proposers, Accepters, Learners
* Permits lossy environment, out of order operations
* Does not guarantee liveness
* Does not address Byzantine failure

Widely used and implemented protocol
Project 4: Build your own Paxos implementation.

* Does not require Project 3
* Uses AMO (Project 2)

Cc
o
0

i

38

Questions?

39

UBC| THE UNIVERSITY OF BRITISH COLUMBIA

	CPSC 416 Distributed Systems
	Logistics
	Deadlines
	Deadlines
	Readings	
	Questions?
	Today’s Failure
	Rackspace Ransomware Outage
	Lesson Goals
	Quorum Consensus
	Consensus
	2 Phase Commit
	3 Phase Commit
	Paxos
	Paxos
	Paxon Parliament
	Paxos Rules
	Paxos Made Simple
	Paxos Made Simple
	Key Ideas
	Paxos Phases
	Phase 1: Prepare
	Proposal: Example (1)
	Proposal: Example (2)
	Phase 2: Accept
	Acceptors: Example
	Phase 3: Learn
	Learners: Example
	Edge Cases
	Challenging Cases: Different Values Proposed
	Challenging Cases: Different Values Proposed
	Liveness Challenges
	Multi-Paxos
	Multi-Paxos
	Using Paxos
	Paxos: Widely Used and Improved
	Lesson Review
	Paxos
	Questions?
	Click to edit Master title style

