CPSC 416 Distributed
Systems

Winter 2022 Term 2 (January 31, 2023)

Tony Mason (fsgeek@cs.ubc.ca), Lecturer

Logistics

Deadlines

Project 1 Code: Grades posted to Gradescope
Project 1 Report: Grades posted to Gradescope ==
Project 2 Code: Pending (Due January 31, 2023) W
Project 2 Report: Pending

Project 3 Released. Initially Due: February 13, 2023.
* Note repo was updated Jan 31. (Minor updates)

Project 4 Released. Initially Due: March 13, 2023
Project 5 Released Due: April 13, 2023

All project work is due April 13, 2023. Late projects have a 75% score cap.

Deadlines

Alternate Path 1 & 2: Proposal was due January 30, 2023.
* Review in progress
* Proceed according to your plan.

Instructor Office Hours:
« Zoom Office Hours (Tuesday) @ 13:00-14:00
» Discord (Casual) Office Hours (Thursday) @ 14:00-15:00

Readings

Required:
A Survey of Rollback-Recovery Protocols in Message-Passing Systems

Recommended:
* Fault Tolerant Techniques (Video)

* Microservices with Java (Blog Post)

https://fsgeek.ca/wp-content/uploads/2023/01/2002-A-Survey-of-Rollbck-Recovery-Prototocols-in-Message-Passing-Systems.pdf
https://youtu.be/ORrM6FrZpzc
https://tiagoamp.medium.com/microservices-with-java-part-2-b77cc37943e2

Questions?

Questions about the class?
Questions about the previous lecture?

Funny stories to share?

Microsoft Azure Outage

January 25, 2023 07:05 UTC

Between 07:05 UTC and 12:43 UTC on 25 January 2023, customers experienced issues with networking connectivity, manifesting as long network latency and/or timeouts when
attempting to connect to resources hosted in Azure regions, as well as other Microsoft services including Microsoft 365 and Power Platform. While most regions and services had
recovered by 09:00 UTC, intermittent packet loss issues were fully mitigated by 12:43 UTC. This incident also impacted Azure Government cloud services that were dependent on Azure

public cloud.

What does this mean?
* Microsoft 365 = “Office applications, including E-mail, OneDrive Storage,
SharePoint, etc”
* Microsoft Power Platform = “data analytics”
* Azure Government = “Governmental services”

Microsoft Azure Outage

Why did it happen?
+ Wide Area Network (WAN) reconfiguration event %%.—-E_
+ Changed IP address on a WAN router W
« Triggered messages to other WAN routers
* Routers reconstructed adjacency lists & forwarding tables

» During reconstruction packet forwarding stopped
+ Change command “had not been vetted”

We determined that a change made to the Microsoft Wide Area Network (WAN) impacted connectivity between clients on the internet to Azure, connectivity across regions, as well as
cross-premises connectivity via ExpressRoute. As part of a planned change to update the IP address on a WAN router, a command given to the router caused it to send messages to all
other routers in the WAN, which resulted in all of them recomputing their adjacency and ferwarding tables. During this re-computation process, the routers were unable to correctly

forward packets traversing them. The command that caused the issue has different behaviors on different network devices, and the command had not been vetted using our full
qualification process on the router on which it was executed.

Microsoft Azure Outage

January 25, 2023 09:00 UTC
UB

0

€

“[N]early all network devices had recovered by 09:00 UTC... Final networking
equipment recovered by 09:35 UTC.”

Outage over, right?
No... “Due to the WAN impact, our automated systems for maintaining the health of the

WAN were paused... some paths in the network experienced increased packet loss from
09:35 UTC until those systems were manually restarted...” [emphasis added]

10

Microsoft Azure Outage

Corrective actions:
» Blocked highly impactful command from getting executed on the devices
* Require safe change guidelines for command execution

Translation: don’t allow people to do dangerous things.

Source: Azure status history | Microsoft Azure (entry for January 25, 2023)

Notice any patterns for failures?

UB

0

€

11

https://status.azure.com/en-gb/status/history/

Lesson Goals

Fault Tolerance

Techniques
* Fault tolerance
* Recovery

Failure Models

Basic Recovery Techniques

Cc
o
0

i

13

Terminology

Fault is some incorrect or unexpected behaviour

0

» Software L

€

« Hardware

Error arises when a fault is noticed or acted upon

Failure occurs when an error impacts service

activate propagate

14

Failure types

vy
©-8-© A [0y ©

Transient Fail-stop
(fail-silent, crash) Timing

Intermittent o 'A

. — Omission Byzantine
Permanent

Failure Management

Detection

Heartbeat signal
Error detection

+ Avoidance

+ Consider all
possible states
and outcomes

e

Predictive ability codes
":_',"___’E-;—-q._,_
P Recovery
Despite occurrence
Removal of failures ensure
Rollback correct execution

May not be possible Fault-tolerance

Rollback Recovery

Detect Failure?

Rollback system state
* Prior to failure
 Consistent state

How?
* Undo recent work effect
* Reset process state

Try again (“re-execute”)

Rollback Recovery

Detect Failure?

Rollback system state
* Prior to failure
 Consistent state

How?
 Undo recent work effect

* Reset process state

Try again (“re-execute”)

Which previous state? UBC
Consistent state Inconsistent state
Py /\ > Py >
Py " Py

18

Rollback Recovery

Detect Failure?

Rollback system state
Prior to failure
Consistent state

How?
Undo recent work effect

Reset process state

Try again (“re-execute”)

How to capture this
state?

Try to find by
progressively rolling
back to earlier
consistent cuts

Checkpointing
Logging

Operation Granularity

Transaction-based

[iy | ¢y relies on use of
. i transactional API
o

@ overhead reduced

to groups of related Application-
Transparent operations specific —
full-system o h
(u Sys e) tx_begin (inputs of all ops) c appllcatlons knOW %
© no application operations best what state is
modification operation2 needed for recovery
@ very high overheads o e @ limited applicability

Basic Rollback Mechanisms
Checkpointing
 Uncoordinated

 Coordinated
« Communications-induced

Logging

Which to use?

Cc
o
0

i

21

Checkpointing
Save {system,application} state

Flush checkpoint to durable storage

Benefits:
e Quick restart

Costs:
* 1/O overhead for checkpoint
« Can mitigate

Checkpoint

Logging

Log information about operations
* Undo: record original value

» Redo: record new value

« Both (undo/redo) Op2 (Y->Y)

Op1 (X->X)

Write log to persistent storage

Benefits:
* Less I/O than checkpoint

Costs:
* Recovery takes time

» Operations may take longer (log search)

Checkpointing and Logging

Checkpoint

Logging

Benefits:

Cost:

Record consistent cut

Use more recent Recovery Line
Checkpomt

Py .‘
Truncate log at checkpoint /no \ / \ms /
Record new operations Pil @
/» \ /m\ /
p, '

Fallure

Recover faster
Minimize log overhead
See: Required Reading

; for original fi
Need stable, consistent cut riginal figure

—
——

Approaches for Checkpointing

Uncoordinated
Coordinated
Communications-triggered

Question: “When do we create a checkpoint?”

Cc
o
0

i

A

System Model

Fixed number of processes
Communications only via messages
Processes interact with external actors (“clients”)
No network partition
Variables:
* FIFO protocol

* Reliable communications
« Number of failure tolerated

UB

0

€

26

Uncoordinated Checkpointing

Processes checkpoint independently

Must construct consistent state at failure point
« Compute recovery line
* Rollback
* Need dependency information

Initial State

-

.

P1.

A

Pz.

Failure

Approach Risk

How far do we roll back?

C
o
0

Recovery Line
Checkpoint

e

o\ gL \ /m\ /

Fallure

Uncoordinated Checkpoint Summary

Domino Effect Useless Checkpoints %ié
could lose all your checkpoints that can
work never form a globally
consistent state may
be taken

Multiple Checkpoints
Per Process

may need more than
the most recent
snapshots

Garbage Collection

needed to identify
obsolete checkpoints

29

Coordinated Checkpointing

Coordinate across processes initiator

Eliminates need for dependency graph ‘
B \mi
No domino effect P, ’

Single checkpoint per process

No garbage collection

Coordinate Checkpoint Challenge

How to coordinate
No global clock
Message issues:
* Reliable P,

« Time bounded delivery

Can we eliminate any checkpoints?

initiator

v

v

Communications Triggered Checkpoint

How to coordinate checkpoint?

Blocking
« Two-phase commit
» Initiator: starts checkpoint
* Non-initiator:
» Blocks forward work
« Waits for commit or abort
* Other consensus algorithms

Non-blocking: Global snapshot algorithm

Communications Triggered Checkpoint

Use piggyback information
* FIFO not required

< &8

v

Nodes: initiator
 Make independent decisions P, 0
* Works without communications A
Py
Message
« Can trigger snapshot P,

* Forces checkpoint decision

RV

UB

0

€

33

Logging Benefits
Computer versus I/O tradeoff

Requires:
* Node must allow
rebuilding consistent
state

initiator

Logging Approaches

Pessimistic:

C
o
0

* Log everything

« Allow event to propagate

initiator
PU '
Optimistic: A
* Log undo information p ——
1 >
* Write log as necessary B —
Pz >

Causality-tracking:

» Capture causality events
* Deterministic recording

Which Consistency Method Should You Use?

It depends:
« Workload characteristics
» Failure characteristics
« System Characteristics
« Communications cost
» Storage cost
* Scale

Anything changed since 20027
* Networks: faster/more reliable
« Storage: faster/cheaper

Uncoordinated, | Coordinated C°";nm;l::§;"°r Pessimistic Optimistic | (1 oosing
Checkpointing| | Checkpointing Checkpoiniing Logging Logging
PWD
assumed? No No No Yes Yes Yes
Garbage
collection Complex Simple Complex Simple Complex Complex
Checkpoints
per process Several 1 Several 1 Several 1
Domino
effect? Possible No No No No No
Orphan)
processes? Possible No Possible No Possible No
Rollback Last global Possibly severa . >0ssibly several)

S st check t
extent Unbounded checkpoint checkpoints Lastcheckpoinl | |\ o cypoints | L2t checkpoin
Complex
recovery? Yes No Yes No Yes Yes
Output
commit Not possible Very slow Very slow Fastest Slow Fast

Comparison between different styles of
rollback-recovery protocols

Fault Tolerance

We can deal with some failures
« Even in distributed systems

Costs associated with this
* Implementation: balance runtime versus recovery costs
* Increased compute, storage, network use
* Numerous trade-offs

Checkpointing and Logging: Key tools for enabling fault tolerance

Cc
o
0

i

38

Questions?

39

UBC| THE UNIVERSITY OF BRITISH COLUMBIA

	CPSC 416 Distributed Systems
	Logistics
	Deadlines
	Deadlines
	Readings	
	Questions?
	Today’s Failure
	Microsoft Azure Outage
	Microsoft Azure Outage
	Microsoft Azure Outage
	Microsoft Azure Outage
	Lesson Goals
	Fault Tolerance
	Terminology
	Failure types
	Failure Management
	Rollback Recovery
	Rollback Recovery
	Rollback Recovery
	Operation Granularity
	Basic Rollback Mechanisms
	Checkpointing
	Logging
	Checkpointing and Logging
	Approaches for Checkpointing
	System Model
	Uncoordinated Checkpointing
	Approach Risk
	Uncoordinated Checkpoint Summary
	Coordinated Checkpointing
	Coordinate Checkpoint Challenge
	Communications Triggered Checkpoint
	Communications Triggered Checkpoint
	Logging Benefits
	Logging Approaches
	Which Consistency Method Should You Use?
	Lesson Summary
	Fault Tolerance
	Questions?
	Click to edit Master title style

