
Indaleko

Using System Activity Context to Improve Finding

by

William Anthony Mason

S.B. Mathematics, University of Chicago, 1987

MSc. Computer Science, Georgia Institute of Technology, 2017

a thesis proposal submitted in partial
fulfillment

of the requirements for the degree of

Doctor of Philosophy

in

The Faculty of Science
(Computer Science)

The University of British Columbia
(Vancouver)

November 2021

© William Anthony Mason, 2021





The following individuals certify that they have read, and recommend to
the Faculty of Graduate and Postdoctoral Studies for acceptance, the thesis
proposal entitled:

Indaleko

submitted by William Anthony Mason in partial fulfillment of the re-
quirements for the degree of Doctor of Philosophy in Computer Sci-
ence.

Examining Committee:

Joana McGrenere, Computer Science
Examination Chair

Margo I. Seltzer, Computer Science
Co-Supervisor

Ada Gavrilovska, Georgia Institute of Technology, College of Computing
Co-Supervisor

Sasha Fedorova, Electrical and Computer Engineering
Supervisory Committee Member

Norman Hutchinson, Computer Science
Supervisory Committee Member

Andrew Warfield, Computer Science
Supervisory Committee Member

i



ii



Abstract

Human society is collecting data at an alarming rate: per-capita data gen-
eration is now over 1.7MB per second. We expect to send 361 billion e-mails
per day by 2024. Rapid data growth, combined with increasing ways to store
and present data to users creates a frustrating challenge finding specific doc-
uments a few days old, let alone those created months or years earlier.

Our data is scattered across physical locations. Existing storage is pre-
sented to us with old and new interfaces that blur the lines between file
system and application. For example, my Outlook mailbox resides on my
local disk drive in both databases and discrete files. Yet I use Outlook, not
my local file system to find documents that were attached to e-mails.

On-demand cloud storage systems provide strong benefits yet also make
it impractical to search locally because not all the content is resident to be
indexed. Currently none of the cloud storage systems offer the rich extensible
search tools found on modern desktop operating systems. Even if they were
to provide such search, it would require querying each one in turn to find
relevant files.

To address these challenges I propose Finding as a Service, which pro-
vides two important capabilities. First, it explicitly decouples finding objects
from storing and presenting objects. Second, it exploits the observation that
users’ mental associations with objects are more complex than the arbitrary
name, type, dates, or attributes on which users search today.

Finding as a Service requires two things: (1) a mechanism for exploiting
the information that modern devices already capture and for capturing ad-
ditional useful information that relates to interactions with digital data and
the environment in which that data is used; and (2) the ability to collect,
store, and query both existing and new usage context pertinent to digital
information. Both of these requirements enable building powerful tools that
helps users in finding digital objects efficiently.

iii



iv



Chapter 1

Introduction

What should I possibly have to tell you, oh venerable one?
Perhaps that you’re searching far too much? That in all that

searching, you don’t find the time for finding? — Siddhartha
(1922), Hermann Hesse.

1.1 Activity Context
In 1945 Vannevar Bush described the challenges to humans of finding things
in a codified system of records [1]:

Our ineptitude in getting at the record is largely caused by
the artificiality of systems of indexing. When data of any sort
are placed in storage, they are filed alphabetically or numerically,
and information is found (when it is) by tracing it down from
subclass to subclass. It can be in only one place, unless duplicates
are used; one has to have rules as to which path will locate it, and
the rules are cumbersome. Having found one item, moreover, one
has to emerge from the system and re-enter on a new path.

The human mind does not work that way. It operates by
association. With one item in its grasp, it snaps instantly to
the next that is suggested by the association of thoughts, in ac-
cordance with some intricate web of trails carried by the cells
of the brain. It has other characteristics, of course; trails that
are not frequently followed are prone to fade, items are not fully
permanent, memory is transitory. Yet the speed of action, the

1



intricacy of trails, the detail of mental pictures, is awe-inspiring
beyond all else in nature.

This is as true in 2021 as it was in 1945. Thus, the question that mo-
tivates my research is: “Can we build systems that get us closer to that
ideal?” My argument that we can by capturing additional information that
is not necessarily useful to computers, but is useful to humans.

I call this additional captured information activity context. While similar
to the ideas proposed in Burrito [2], I have broadened that idea beyond
just “what a user is doing” to incorporate information about what the user
is experiencing that corresponds to more human-like context information
because it is useful for constructing association.

Thus an “activity context” is an answer to the question: what is going
on in relation to the current event on a digital object? The job of the system
becomes answering this question in a way that is useful.

More concretely, activity context is concerned with the environment in
which a given digital object is accessed. Without restricting the abstract
concept, concrete examples of what I consider to be elements of an “activity
context” might include:

• Current weather.

• Notable news events.

• Focus website opened in a visible browser tab.

• User’s mood.

• User’s heart rate.

This is distinguished from what the digital object is. While understanding
what something is has merit, the context in which a digital object is used
yields additional understanding about that digital object.

Further examples, in the form of “use cases,” can be found in Section 1.4.

1.2 Thesis
Collecting, storing, and disseminating information about sys-

tem activity (“activity context”) enables the use of Information
Retrieval (IR) and Human Computer Interface (HCI) research to
build powerful tools to improve human finding of pertinent digital
data.

2



“Intelligent use of files depends on having sufficient knowledge about
them: their purposes, structures, and contexts. Humans have tradition-
ally made do by using their own methods for capturing and manipulating
such knowledge, but this is not available to programs, nor is it necessarily
convenient for humans [3].”

Determining context is a challenge with modern computer storage sys-
tems. It is unrealistic to expect human users to provide that context. Con-
text is dynamic, imprecise, and not necessarily obvious, yet humans rely
upon context to create associations. By making environmental context in-
formation available to programs, those same programs are able to present
better options, which is convenient for humans.

1.3 Finding
The volume of digital data is growing exponentially. Thus, it is not sur-
prising that solutions that worked when users were grappling with kilobytes
(KB) or megabytes (MB) of data do not work in the face of this growing
deluge.

IBM’s first magnetic disk drive could store up to 2.5 megabytes(MB) 1 of
digital data. In 2020, we add 1.7MB of data per second per person 2. Today
we have become digital hoarders, collecting and keeping so much data that
we often cannot find specific objects when we need them. How did we reach
this point?

Early persistent storage systems used a simple flat directory structure
that gave a unique name to each object (“file”). Such a simple structure
was sufficient to name and identify distinct data objects (“files”). Finding
the correct file was just a matter of scanning and picking from the list. This
simple structure did not scale well and was replaced by a model based upon
how paper documents were organized. The hierarchical name space [4]–[7]
is one in which files (“digital objects”) are grouped into directories (some-
times called folders). Directories can also be grouped into other directories.
This model mirrors how a filing cabinet works: multiple sheets of paper are
gathered into a folder, folders are organized into drawers, drawers into filing
cabinets, filing cabinets into rooms, etc. The directory and file metaphor
was in use by 1958 [4] and persists today as the common model despite
the volume of data being stored by a single computer storage device (“disk

1https://www.7dayshop.com/blog/terabyte-evolution/
2https://techjury.net/blog/big-data-statistics/

3

https://www.7dayshop.com/blog/terabyte-evolution/
https://techjury.net/blog/big-data-statistics/


drive”) increasing by at least 106 3.
In addition to the challenges of scaling, the file cabinet metaphor imposes

physical file limitations that are not valid for digital data. Physical file
cabinets do not allow a document to be in two folders at the same time but
there is no such restriction on electronic documents. The Multics researchers
addressed this by creating the link, an idea that is still used in many modern
file systems [5].

Computer networking enabled data sharing between users and computers
but complicated naming. Remote data access was typically represented to
users either as a hierarchical file system [8], [9] or an application program
that programmatically connected users to remote data [10]–[12].

By 1990 the volume of data with which users interacted was so large
that researchers questioned the utility of the hierarchical name space [13].
The Semantic File System (SFS) [14] suggested that organization of digi-
tal objects be more fluid so that users could group items together in ways
that were semantically meaningful. The meta-data generated from seman-
tic information generated from file contents permitted powerful query-based
dynamic file organization.

While semantic file systems have not been widely adopted, the concept
of extracting semantic information from file content is present in modern file
indexing systems. These indexing services employ “transducers” to extract
semantic information from files. Desktop search utilities (Windows Search,
Apple Spotlight, Station for Linux) rely upon indexing services to provide
their functionality.

There are parallels between the challenges of indexing files and the chal-
lenges of indexing Internet web pages. Early search engines used a curation
model in which humans decided what websites were of interest based upon
the information within the web page itself — similar to the way that seman-
tic information was extracted from files in the Semantic File System 4.

Internet web page indexing changed profoundly when two Stanford grad-
uate students proposed a novel way to exploit the structure of Internet web
pages to extract usage information from web pages that did not depend
upon semantic content [15].

Google’s website used to state the number of pages that they indexed. In
1998 the first capture of Google’s website by archive.org shows they claimed
to index more than 25 million pages (Figure 1.1). Google no longer publishes

3Disk drives were measured in MB in 1965 and are measured in TB today.
4https://www.hpe.com/us/en/insights/articles/how-search-worked-before-google-1703.

html

4

https://www.hpe.com/us/en/insights/articles/how-search-worked-before-google-1703.html
https://www.hpe.com/us/en/insights/articles/how-search-worked-before-google-1703.html


Figure 1.1: First Wayback capture of google.com (google.stan-
ford.edu) in 1998

that number but industry estimates indicate the number is at least 103 more
now than it was then, and this only covers a few percent of the entire content
stored on the Internet [16] 5.

Could we utilize a similar technique for finding information within our
own trove of files? While there are similarities between the Internet and
our file collections, there are also significant differences. Files lack the level
of common structure present in web pages, preventing simple extraction
of references between files. Files (or digital objects) are stored in myriad
locations with different access mechanisms: local storage, cloud storage,
database, collaboration applications, e-mail programs, etc. Sometimes these
overlap: your e-mail program stores some or all of your data on your local
computer, within your local storage. However, you do not expect to use
the tools for searching your local storage to find things within your e-mail
software. Thus, we should consider them to be distinct storage locations.
I refer to these distinct storage locations as storage silos (or just silos) to

5https://www.worldwidewebsize.com/

5

https://www.worldwidewebsize.com/


emphasize their inherently separated nature.
Network storage is presented in many different formats: an inexpensive

disk drive attached to the local network represents “Network Attached Stor-
age” (NAS) or a specialized parallel data cluster such as HDFS 6, DAOS 7,
Lustre 8, or Ceph 9. They typically support one or more common data
sharing protocols, such as NFS [17] or CIFS 10. They vary dramatically in
how they are managed, accessed, and searched. In most cases there is no
common interface — each represents a unique “storage silo.”

Cloud storage is one specific type of network storage that is popular
because it allows you to access your data from any of your devices, provides
a reliable backup mechanism, and permits selective download to any given
device. However, these benefits are paired with challenges when it comes to
finding specific digital objects. If files are not present on your local device,
the indexing services on those devices cannot assist you. You could download
all of the content from the cloud storage providers to enable indexing, but
that consumes considerably more bandwidth and storage and is impractical
for devices that have resource constraints. While we can use the cloud
providers’ search services, that requires iteration over each of those services,
using different interfaces with variable results.

Our files come from multiple sources including websites, e-mails, databases,
and collaboration tools. Those documents are stored both locally and re-
motely. We create, access, and modify documents and then send them
onwards using any of the variety of silos and collaboration tools at our dis-
posal. Just a few days after we last accessed them we struggle to find those
documents.

Given the diffusion of files across storage silos that occurs because of
our sharing and use, we often find versions and related files scattered across
multiple silos. We struggle to find these versions and determine when we
have found the “right” one.

Returning to the question of using contextual information for improving
finding, the research community has observed that adding contextual infor-
mation, such as the current weather, to existing file collections materially
improves human ability to find the relevant digital object [18]–[20]. Thus, it

6https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
7https://www.intel.ca/content/www/ca/en/high-performance-computing/

daos-high-performance-storage-brief.html
8https://www.lustre.org/
9https://docs.ceph.com/en/pacific/cephfs/index.html

10https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-cifs/
d416ff7c-c536-406e-a951-4f04b2fd1d2b

6

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://www.intel.ca/content/www/ca/en/high-performance-computing/daos-high-performance-storage-brief.html
https://www.intel.ca/content/www/ca/en/high-performance-computing/daos-high-performance-storage-brief.html
https://www.lustre.org/
https://docs.ceph.com/en/pacific/cephfs/index.html
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-cifs/d416ff7c-c536-406e-a951-4f04b2fd1d2b
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-cifs/d416ff7c-c536-406e-a951-4f04b2fd1d2b


seems the answer is “Yes, using contextual information improves finding.”
Google solves a simpler problem: an Internet web search need merely

find an answer to the search query. A personal file search needs provide the
answer. Thus, it may not be possible to provide a definitive answer, but
narrowing the potential list of plausible answers leads users to the relevant
file, which is the goal of finding.

The data that we need for creating activity context is already being
collected by our computers. Modern computers collect vast amounts of in-
formation about us: what we do, where we are, with whom we communicate,
the applications we use, the files we access, the music we play, the web pages
we visit, even how we feel [21], [22]. We know this data exists because our
own devices provide this information to third parties. Given this data is
already being collected, we know the additional cost will be to store and
make it accessible to applications.

Finding as a Service (FaaS) will use this existing information to solve
our data finding problem. FaaS decouples finding objects from storing ob-
jects. FaaS facilitates finding by exploiting contextual information beyond
the basic object characteristics widely available for searching today: names,
types, and dates. By relating information we already have with how our
digital objects are used, we provide the activity context to enable Finding
as a Service (FaaS).

Activity context is important because it captures useful information about
the environment in which files are created, consumed, and updated. Activity
context need not be something the system ordinarily relates to the digital ob-
ject. Activity context captures key information about the the user’s wholistic
environment.

1.4 Use Cases
The following use cases provide specific scenarios that cannot be achieved
using current systems. I maintain that Finding as a Service addresses these
use cases, which supports my thesis.

• The lost original. Imagine that you received a spreadsheet from
someone. You begin to edit it, add information, sift through it. At
some point you realize that you sorted a subset of the columns, hope-
lessly scrambling the original information and your edits. You try to
find the original source of the spreadsheet, only to realize that you
cannot do so, even when you search in your e-mail program using the
name of the file that was saved on your local drive as part of your

7



editing process. The system should permit you to find the original
source of the information, even though the related digital objects are
in different silos.

• The misplaced presentation. You arrive at a meeting with your
client after a long trip, only to realize the laptop computer you were
using will not boot. You have your smart phone and you think you
saved it to a cloud service. How do you find it so you can share it
with a colleague at the meeting? The system should permit you to
find your own digital data in your cloud storage regardless of which
device you used to create it.

• The multi-silo relationship problem. A colleague shares their ex-
perimental data with you, which was stored in NREL’s High-Performance
Computing Data Center 11. You then use that data as part of your
own work, which you wish to share with a broader audience using
Compute Canada 12. You also shared your computational notebooks
using your organization’s account with Microsoft 13. You created your
slides in Prezi 14 and presented them to a different research group on
their Discord server 15. One of the people that attended downloaded
two of your notebooks and created a new notebook from them. They
then shared that notebook publicly via Google Colab 16. Your col-
league knows that she shared her data with you and wants to be able
to quickly find the documents that you and others have shared based
upon that original data. Collaborative work like this is a modern re-
ality and it is unlikely that all work product will be co-located. The
system should permit your colleagues to find the work you and others
have shared with her without your intervention.

• Multi-silo finding. Hao is a visiting student from the country of
Lemuria doing an internship with you in Camelot. While arranging for
this internship, Hao required numerous different data objects: email
messages with the host, offer letters, academic forms, a visa, boarding
passes, project proposals, and more. The system should be able to
provide you with a set of related files, regardless of their storage silo.

11https://www.nrel.gov/computational-science/hpc-data-center.html
12https://www.computecanada.ca/techrenewal/rdm/
13https://visualstudio.microsoft.com/vs/features/notebooks-at-microsoft/
14prezi.com
15discord.com
16https://colab.research.google.com/

8

https://www.nrel.gov/computational-science/hpc-data-center.html
https://www.computecanada.ca/techrenewal/rdm/
https://visualstudio.microsoft.com/vs/features/notebooks-at-microsoft/
discord.com
https://colab.research.google.com/


• The where did I get this information conundrum. In our mod-
ern world we often have one (or more) web pages open when we are
authoring one (or more) documents. A reasonable question to ask
would then be “what web pages did I look at while writing this docu-
ment?” Often it is not just that you looked at a given web page, but
also if it was the last web page you looked at and how long you looked
at it. The system should be able to provide you with a list of that web
activity.

• How do I share information while preserving privacy? Zene,
an investigative journalist who routinely receives sensitive information
from third parties, is investigating the company from the prior use
cases. Zene needs to be able store and access sensitive information,
including information about the activity context of various e-mails,
documents, pictures, and audio and video files. While Zene ensures
that these data are encrypted, they need to also ensure that they can
both find information and ensure that meta-data associated with those
files is both usable and properly protected across silos. While Zene
must protect their sources, they must also be able to associate evidence
with those sources to make judgement calls about their validity. The
system should support security and privacy policies for attributes that
accomplish both.

This list of use cases is not exhaustive and is intended to provide cases
that resonate with readers. They are use cases that are not addressed by
existing systems. I review these existing systems and how they fail to address
these use cases in Section 1.5.

1.5 Existing Solutions Fall Short
Prior work has addressed some of the challenges that I identified in the use
cases (Section 1.4). I briefly introduce key aspects of how they fall short
here and provide greater detail in Chapter 2.

A simple solution to the multi-silo namespace challenge is to graft those
namespaces together. UNIX mount points [23] are perhaps the first instance
of such federating namespaces. Distributed federation, as provided by dis-
tributed file systems such as NFS [8] and AFS [9] emerged in the 1980s soon
after adoption of high speed networks such as Ethernet [24].

There is some work in cloud storage federated namespaces [25], [26].

9



Nextcloud 17 allows users to connect multiple Nextcloud instances and in-
tegrate with FTP, CIFS, NFS and object stores. This yields a classic
hierarchical namespace structure with its known limitations [13], [27]. It
does nothing to facilitate finding. Peer-to-peer sharing networks (e.g., IPFS
[28]) implement a distributed file system where nodes advertise their files to
users. MetaStorage [29] implements a highly available, distributed hash ta-
ble, similar to Amazon’s DynamoDB [30], but with its data replicated and
distributed across different cloud providers. MetaStore offers a key-value
store interface 18. Farsite [31] organizes multiple machines into virtual file
servers, each of which acts as the root of a distributed file system. Comet
describes a cloud oriented federated metadata service [26].

None of these address the scaling problem that arises when data is an-
alyzed and indexed away from where it is stored. Similarly, none of these
address the integration of sensitive locally stored information about per-
sonal usage of these objects. Thus, one key benefit of better finding is that
it should improve the efficiency of retrieving data stored across non-local
storage silos.

Some prior work explored using extrinsic usage information for finding.
Placeless [32] focused on using process level information extracted from their
document processing system to associate files together. Similarly, Burrito [2]
proposed activity context, which they define as “the user’s actions at a par-
ticular time.” Both look at narrow instances of the larger finding problem.

Provenance uses observable information about construction of a file to
augment file search, which in turn improves findability [33]. Provenance
search takes a narrow view of the activities of interest and are all largely
causality focused. However, humans tend to think associatively [19], focusing
on what else was happening — the cleaning crew came by their desk while
they were writing that document, the discussion at a meeting with others,
their location when they wrote a given document, or some other event that
was happening around the time they interacted with a given document.

While environmental information is not as obviously related as causal re-
lationships, prior work related to using statistical inference to establish rela-
tionships within the storage domain has demonstrated such mechanisms can
be more efficient at identifying patterns that lead to higher efficiency [34].

17https://nextcloud.com
18https://cwiki.apache.org/confluence/display/hive/design

10

https://nextcloud.com
https://cwiki.apache.org/confluence/display/hive/design


1.6 Contributions
The research to support my thesis will contribute the following:

1. Production of the Finding as a Service (FaaS) dataset, a collection of
meta-data and activity context from a local system, that will enable me
to explore potentially useful information for informing activity context
data collection. In addition, I will publicly share this data set to enable
other researchers to develop new techniques for users to find digital
items.

2. Indaleko 19, my architecture for a system that captures, stores, and
disseminates activity context without imposing excessive resource de-
mand.

3. Topish 20, a single node implementation consistent with Indaleko that
provides FaaS across multiple storage silos on a single system.

4. Находка 21, a distributed implementation of Indaleko that provides
Finding as a Service (FaaS) across multiple systems using a combina-
tion of device private and cross-device shared storage silos.

5. An evaluation demonstrating that it is possible to capture activity
context without imposing excessive overhead, in either space or time.

These projects focus on improving finding.
The remainder of this document provides more specific insight into these

contributions and how I propose creating and disseminating them. In Chap-
ter 2 I review the prior work that underlies my thesis: what types of storage
silos exist, what information we already have available and why these are
not sufficient to meet these use cases. In Chapter 3 I set out the research
questions that I seek to answer to fully explore my thesis. In Chapter 4 I
describe the structure of the system I propose building in order to support
my thesis and how it addresses these use cases. In Chapter 5 I discuss how
I propose evaluating my system. Specifically I attempt to address key ques-
tions, such as: “how well does it address these use cases?”, “what are the

19Indaleko is Xhosa for pragmatics. In Linguistics, pragmatics is the study of meaning
within a given context

20Topish is the Uzbek word for finding; the most recent graduate student from our
research group is from Uzbekistan and has always been supportive of my research

21Находка is the Russian word for finding in recognition of the support for my research
that I have received from both Ada Gavrilovska and Alexandra Fedorova.

11



performance and resource implications of using my system?”, and “how well
does it enable other communities to construct more effective finding tools?”

12



Chapter 2

Background

Paradigm paralysis refers to the refusal or inability to think or
see outside or beyond the current framework or way of thinking
or seeing or perceiving things. Paradigm paralysis is often used

to indicate a general lack of cognitive flexibility and adaptability
of thinking. — The Oxford Review Encyclopedia of Terms

(2021).
Key topics crucial to understanding my proposal are:

1. Why finding is important. I discuss the related background in Sec-
tion 2.1.

2. How to help people find things. I discuss the background related to
finding things in Section 2.2.

3. Storage Access mechanisms. I discuss the APIs that are available to
various services in Section 2.3.

4. Existing Meta-data. I discuss existing meta-data that are already
known to exist and can be extracted in Section 2.4.

This information is useful in better understanding the architecture pro-
posed in Chapter 4.

2.1 The Importance of Finding
In Section 1.1 I provided a basic definition of activity context and described
Vannevar Bush’s 1945 work observing the difference between computer index
systems and human associative memory [1].

13



While preparing this proposal I spent time looking at the guides many
libraries provided about the naming of files. I found a body of recommen-
dations about file naming standards from significant academic and govern-
mental sources and summarize that in Table 2.1. These recommendations
are consistent with prior work [35].

In Table 2.1 I provide links to a number of organizations that publish
recommendations for “naming files.” While they vary somewhat, there is far
more similarity than difference. Harvard’s list is:

• Think about your files

• Identify metadata (e.g., date, sample, experiment)

• Abbreviate or encode metadata

• Use versioning

• Think about how you will search for your files

• Deliberately separate metadata elements

• Write down your naming conventions

The important observation here is how we rely upon the file name to
provide context for what a given file represents. Uniformity of information
is important — the “naming convention” permits not only identifying simi-
larity but key elements of difference between any two named things.

It is difficult not to look at this as a modern indictment of a system that
is fundamentally broken: requiring users understand meta-data, version-
ing, encoding, and capturing the naming represents a significant cognitive
burden.

Saltzer pointed this out as well: “This approach forces back onto the
user the responsibility to state explicitly, as part of each name, the name of
the appropriate context [7].”

The purpose of the file system was to serve as the provider of “human-
oriented names” [7, Table III]. Mogul observed that “Better file systems
allow us to manage our files more effectively, solve problems that cannot now
be efficiently solved, and build better software [3, p. 1].” Gifford observed:
“[A] semantic file system can provide associative attribute-based access to
the contents of an information storage system with the help of file type
specific transducers... The results to date are consistent with our thesis that
semantic file systems present a more effective storage abstraction than do
traditional tree structured file systems for information sharing... [p. 22][14]”

14



T
ab

le
2.

1:
Sa

m
pl

e
A

ca
de

m
ic

an
d

G
ov

er
nm

en
ta

lN
am

in
g

C
on

ve
nt

io
ns

U
ni

ve
rs

ity
of

C
am

br
id

ge
ht

tp
s:/

/w
ww

.d
at

a.
ca

m
.a

c.
uk

/d
at

a-
m

an
ag

em
en

t-
gu

id
e/

or
ga

ni
sin

g-
yo

ur
-d

at
a

H
ar

va
rd

U
ni

ve
rs

ity
ht

tp
s:/

/d
at

am
an

ag
em

en
t.h

m
s.h

ar
va

rd
.e

du
/c

ol
lec

t/
fil

e-
na

m
in

g-
co

nv
en

tio
ns

Sm
ith

so
ni

an
In

st
itu

tio
n

ht
tp

s:/
/l

ib
ra

ry
.si

.e
du

/s
ite

s/
de

fa
ul

t/
fil

es
/t

ut
or

ia
l/

pd
f/

fil
en

am
in

go
rg

an
izi

ng
20

18
02

27
.p

df

Le
la

nd
St

an
fo

rd
,

Jr
.

U
ni

ve
r-

sit
y

ht
tp

s:/
/l

ib
ra

ry
.st

an
fo

rd
.e

du
/r

es
ea

rc
h/

da
ta

-m
an

ag
em

en
t-

se
rv

ice
s/

da
ta

-b
es

t-
pr

ac
tic

es
/

be
st

-p
ra

ct
ice

s-
fil

e-
na

m
in

g

U
ni

te
d

St
at

es
N

at
io

na
l

In
st

i-
tu

te
of

Sc
ie

nc
e

&
Te

ch
no

lo
gy

ht
tp

s:/
/w

ww
.n

ist
.g

ov
/s

ys
te

m
/f

ile
s/

do
cu

m
en

ts
/p

m
l/

wm
d/

la
bm

et
ro

lo
gy

/
El

ec
tr

on
icF

ile
O

rg
an

iza
tio

nT
ip

s-
20

16
-0

3.
pd

f

U
ni

ve
rs

ity
of

B
rit

ish
C

ol
um

bi
a

ht
tp

s:/
/r

es
ea

rc
hd

at
a.

lib
ra

ry
.u

bc
.c

a/
fil

es
/2

01
9/

01
/F

ile
N

am
e_

Gu
id

eli
ne

s_
20

14
04

10
_v

03
.p

df

U
ni

ve
rs

ity
of

C
hi

ca
go

ht
tp

s:/
/g

ui
de

s.l
ib

.u
ch

ica
go

.e
du

/c
.p

hp
?g

=
56

51
43

&
p=

38
92

70
6

U
ni

ve
rs

ity
of

To
ro

nt
o

ht
tp

s:/
/o

ne
se

ar
ch

.li
br

ar
y.

ut
or

on
to

.c
a/

re
se

ar
ch

da
ta

/f
ile

-m
an

ag
em

en
t

U
ni

ve
rs

ity
of

W
as

hi
ng

to
n

ht
tp

s:/
/i

tc
on

ne
ct

.u
w.

ed
u/

lea
rn

/w
or

ks
ho

ps
/o

nl
in

e-
tu

to
ria

ls/
we

b-
pu

bl
ish

in
g/

we
b-

pu
bl

ish
in

g-
at

-t
he

-u
w/

in
te

rn
et

-fi
le-

m
an

ag
em

en
t/

4

15

https://www.data.cam.ac.uk/data-management-guide/organising-your-data
https://datamanagement.hms.harvard.edu/collect/file-naming-conventions
https://library.si.edu/sites/default/files/tutorial/pdf/filenamingorganizing20180227.pdf
https://library.stanford.edu/research/data-management-services/data-best-practices/best-practices-file-naming
https://library.stanford.edu/research/data-management-services/data-best-practices/best-practices-file-naming
https://www.nist.gov/system/files/documents/pml/wmd/labmetrology/ElectronicFileOrganizationTips-2016-03.pdf
https://www.nist.gov/system/files/documents/pml/wmd/labmetrology/ElectronicFileOrganizationTips-2016-03.pdf
https://researchdata.library.ubc.ca/files/2019/01/FileName_Guidelines_20140410_v03.pdf
https://guides.lib.uchicago.edu/c.php?g=565143 & p=3892706
https://onesearch.library.utoronto.ca/researchdata/file-management
https://itconnect.uw.edu/learn/workshops/online-tutorials/web-publishing/web-publishing-at-the-uw/internet-file-management/4
https://itconnect.uw.edu/learn/workshops/online-tutorials/web-publishing/web-publishing-at-the-uw/internet-file-management/4


Saltzer challenged us with general naming but set it aside for future
research. Mogul captured the idea that properties could be used to store
additional meta-data about files. Gifford explored the idea that information
about what a file represents could be extracted and used to dynamically
organize files based upon semantic content of the files themselves.

Despite these insights, the tools we have for finding remain primitive.
Forcing users to embed context is a naming solution, but it creates cog-
nitively challenging requirements such as “naming conventions.” Similarly,
creating tagging mechanisms using extended attributes or properties has not
provided sufficient benefit to be broadly used. Semantic file systems have
been implemented in modern indexing services and are somewhat useful but
have clearly not solved the problem.

All of these solutions are “inward focused.” That is, they focus on the file
(or object): its attributes, which includes its name and its contents. They
fail to understand the file’s usage context: it’s relationship to other files and
to other events in the user’s environment. Thus, the relevant prior systems
work falls short of evaluating my thesis.

2.2 Useful Information for Finding
I summarize prior work useful to this proposal in Table 2.2. In some cases
the precise information about what data was used is not clear from the
available materials and thus is not included in Table 2.2. The table identifies
the specific information, what type this represents, and the reference that
provides this information. My classification of type is based upon previously
proposed types [37] of who, when, where, what, why, and how.

The remainder of this section reviews the literature on which Table 2.2
is based and explains how it relates to my broader thesis.

Search is one tool that assists in finding but it is not the first choice for
many human users [43]. Thus, improvements in search are only beneficial
at the point that the existing organizational system has already failed.

The Human-Computer Interface community has provided an insightful
definition of good design:

A well designed computer system permits use of the tools it
offers without requiring users to dedicate extensive mental pro-
cessing to operations inherent in the system design rather than
the task. Furthermore, its tools are designed to also reduce task-
specific mental processing, especially those types of processing
that are performed more effectively by computers than by people,

16



Table 2.2: Useful Context Information (See Section 2.2)

Information
Dimensions

Reference

W
ho

W
he

n

W
he

re

W
ha

t

W
hy

H
ow

Social Media X X X X X [36], [37]
E-mail X X X X [38]
Webpage X X X X X [38], [39]
Document a X X X X X [37]–[40]
Audio X X [41]
Image X X X [41]
Video X X X [41]
Applications X X X X X [33], [40]
Behavior X X X X X X [33], [40]
Change X X X X X X [33], [40]
Calendar X X X X X X [36], [37], [42]
Paths X X X X X X [33], [37]
GPS X X X [36]
File System b X X X X X [33], [36]
Weather X X X X [36]
Financial Data X X X X X [18]

New Suggestions
Voice/Video Calls X X X
Collaboration c X X X X X
Music X X X X
Medical Info d X X X X X

aPDF,RTF,Word, etc.
bThe distinction between paths which involve understanding application behavior and

file system activity, which is about specific files or directories demonstrates potential
complexity due to data collection from multiple sources in the same system.

cDiscord, Slack, Teams
dWearable Monitor, Insulin Pump

17



such as calculations and accurate storage and recall of large
amounts of pre-specified information [44][bold face is my
addition].

Information retrieval researchers are thus more interested in evaluating
the outcome of a human finding the object they seek, rather than the effi-
ciency of the underlying search infrastructure [45]. The need to find things
is pervasive: clearly there are obvious things like the need to access a partic-
ular document, but there are other important needs, such as the need to find
objects that must be removed, such as when it is required to comply with
legal obligations, such as the “right to be forgotten” under the GDPR 1 [46].
Some users prefer to delete content they know they will no longer need [47].
While the reasons for finding and removing content vary, the ability to do
so efficiently is directly related to finding that information.

Prior work has suggested a number of different factors that can be used
to find content:

• Naming similarity; similarly names files are often related.

• Content similarity: files with similar content are often related.

• Temporal similarity: files that were created and/or accessed around
the same time are more likely to be related [48].

• Causality: files that are created using the same tool are more likely to
be related.

Prior work has also observed that using contextual information from
“personal digital traces” clearly assists in finding relevant personal data:
“Work in Cognitive Psychology has shown that contextual cues are strong
triggers for autobiographical memories [37].” The source code for the data
collection tools used by the authors is still available, albeit dated 2.

The finding problem is one at the heart of the personal information man-
agement research efforts, whose work suggests that one reason search is not
preferred is that it takes longer than navigation [43]. The semantic file sys-
tem work fits well with this observation, as one of its primary contributions
was the observation that search results can be represented as “virtual di-
rectories,” which provides a means of presenting search results as a form of
navigation [14].

1https://gdpr.eu/right-to-be-forgotten/
2https://github.com/ameliemarian/DigitalSelf

18

https://github.com/ameliemarian/DigitalSelf


Similarly, prior work established the need to be able to support a broad
range of storage locations — the “storage silos” that I have previously men-
tioned. In Stuff I’ve Seen researchers found that the ability to search across
silos in a uniform fashion led to increased utilization of such tools [49]. In-
deed, the observation in the personal information management community
repeatedly stresses the importance of supporting cross-silo management of
digital data.

This makes sense: when we are looking for a specific object that we know
exists, we do not particularly care where it is stored.

The research on “table top interfaces” is another useful example of how
the HCI field is exploring alternative interfaces. Their findings include the
fact that hierarchical structures do not work well in collaborative table top
systems [50]. There are similarities between table top interfaces and mobile
interfaces in terms of their interaction models, e.g., no keyboards or mice.
The mobile device solution initially was to create silos for each application’s
files. While it freed the applications and users from the underlying hierar-
chical name space, it led to an explosion in the number of silos on a single
device. Some applications (e.g., cloud storage on mobile devices) still ex-
pose hierarchical interfaces but even they tend to demote the hierarchical
name space in favor of other presentation models. In essence, the virtual
directories of the semantic file system have become the primary interface.

The MyLifeBits project followed one person’s goal of organizing their
own data: “We hoped to substantially improve the ability to organize,
search, annotate, and utilize content. Also, we wanted to obtain a uni-
fied database in contrast to the many data “islands” being created including
mail, contacts, and meetings, finances, health records, photos, etc. Frus-
tration with the file system led to testing the suitability of databases for
personal storage, and ultimately into research about next generation storage
systems [41].” Note that the authors identified many of the same problems
that still exist today, including the multi-silo problem, yet those problems
remain unsolved.

The use of richer contextual information to better search and organize
data is one that seems to be a perennial favorite for greater exploration. The
database community has observed specific types of context that are useful:
applications, behavior, and change: “In decoupled systems, behavioral con-
text spans multiple services, applications and formats and often originates
from high volume sources [40]…”

The use of “personal digital traces” is close to the work that I have
proposed as part of my thesis. The authors observe: “Search of personal
data is usually focused on retrieving information that users know exists in

19



their own data set, even though most of the time they do not know in which
source or device they have seen the desired information. Current search
tools such as Spotlight and Gmail search are not adequate to deal with this
scenario where the user has to perform the same search multiple times on
different services or/and devices rather than search over just a single service.
Besides, traditional searches are often inefficient as they typically identify
too many matching documents. [37]”

Finally, I note that the importance of context spans disciplines. The
study of pragmatics in Linguistics relates to the understanding of meaning
within the context in which it is used: “Pragmatics is a field of linguistics
concerned with what a speaker implies and a listener infers based on con-
tributing factors like the situational context, the individuals’ mental states,
the preceding dialogue, and other elements. 3” Closer to home, the database
community has explored the importance of context in terms of human un-
derstanding: “Context has often a significant impact on the way humans (or
machines) act and on how they interpret things; furthermore, a change in
context causes a transformation in the experience that is going to be lived.
The word itself, derived from the Latin con (with or together) and texere
(to weave), describes a context not just as a profile, but as an active pro-
cess dealing with the way humans weave their experience within their whole
environment, to give it meaning. [51]”

2.3 Storage Silo Access
The number of novel storage implementations is large. For example there
are dozens of file systems actively in use 4. In addition, there is a constant
stream of new proposed variants [52], [53].

Thus, rather than review the myriad of file systems that exist and con-
tribute novel storage silos, I instead focus on classifying storage silos by the
interface that is used to access them.

• File system APIs. Most file systems use or support a POSIX like inter-
face, which typically includes create, open, close, read, write, delete,
rename, and read directory. In addition, most local file systems pro-
vide monitoring interfaces, which permits monitoring state change.

• Object Store. The OpenStack Object Store interface provides a useful
definition of a robust implementation that maps to the HTTP proto-

3https://www.masterclass.com/articles/pragmatics-in-linguistics-guide
4See https://en.wikipedia.org/wiki/Comparison_of_file_systems

20

https://www.masterclass.com/articles/pragmatics-in-linguistics-guide
https://en.wikipedia.org/wiki/Comparison_of_file_systems


col quite closely 5. Object stores are commonly used because of their
simplicity and sufficiency for a range of uses in both device local and
internet enabled applications. Thus, object stores normally support
an authentication protocol and object access protocol using get (re-
trieve object contents and meta-data), put (object create or update),
copy, delete, head (retrieve object meta-data), and post (update object
meta-data).

• Cloud storage. There is a greater range of APIs for cloud storage,
with each implementation typically providing documentation. Many
of these consist of “Web APIs” which are implemented using the HTTP
or HTTPS protocols. Areas of common functionality, albeit varying
implementation, are authentication, file access, and file change notifi-
cations. Google Drive, Dropbox, Amazon S3, and Microsoft OneDrive
all support mechanisms for authentication, file access (including meta-
data access) and file change notifications. They do not use a common
API for doing this so that an importation/interaction layer must be
written for each one of them; ideally I expect to be able to produce a
common event format that I can use with all of them.

• Databases. There are several types of common databases, including
relational databases such as Oracle, MySQL, Microsoft SQL, Post-
gresSQL, IBM DB2, Sybase, and Teradata. They all support some
variant of the common structured query language which is typically
accessed via programming libraries that simplify the various differ-
ences. Non-relational databases have become increasingly popular in
recent years. Examples of commonly-used non-relational databases
include MongoDB, Cassandra, Redis, and Neo4j and can be classified
as document stores, column store, key-value stores, and graph stores.

• Applications. While applications also tend to consume services from
other storage layers, the context of those operations is often not visi-
ble. A file system has no way of knowing that the file just created by
the e-mail program was an attachment, rather than a data file used
by the application program itself — but the application is aware of
this important contextual understanding. There is far less structure
or regularity of applications. These applications tend to have their
own unique interfaces. For example, graphical user interface based
“file browsers” often have “hooking” interfaces that permit intercept-

5https://docs.openstack.org/api-ref/object-store/

21

https://docs.openstack.org/api-ref/object-store/


ing higher level operations such as “copy a file.” Collaboration applica-
tions such as Slack, Discord, and Teams also have extension interfaces
for interacting with them but these interfaces do tend to be specific to
the application. Commonly used non-web based e-mail programs such
as Thunderbird and Outlook have public APIs for building extensions.

One of the challenges in trying to create a classification system for “stor-
age silos” is that the dividing line is often not clear. For example, if one
accesses an Oracle database via a REST API, is that a database or cloud
storage? For the purposes of understanding the range of APIs this general
breakdown is sufficient and allows me to identify broad categories of silos to
consider using in my work.

2.4 Existing Meta-Data
The volume of available meta-data is high enough that one of the challenges
I face in conducting experiments to evaluate my hypothesis is coping with
the volume of information.

My summary of useful information in Table 2.2 includes references to
prior work that draws upon existing meta-data. The work regarding collec-
tion of personal digital traces is particularly germane, because not only did
the authors identify useful information, they made their own tools publicly
available.

Beyond this, I can point to existing meta-data sources that I know exist
and can be used as part of my own work. One is the extended Berkeley
Packet Filter (eBPF) support that is available on Linux and being added to
Windows. eBPF is an extensible framework for collecting data from the run-
ning operating system by injecting “hooks” that allow detailed monitoring.
There are already existing eBPF filters that provide extensive meta-data.
For example, the Linux OSQuery interface has an eBPF alternative backend
for data collection. The community developing and extending eBPF is quite
active and the scope of information already available is extensive 6. From
the perspective of testing my thesis, I expect it will not require extensive
development of new software.

Windows has an operating system level introspection package known as
Event Tracing for Windows 7 (ETW) as well as Microsoft’s recent work on
supporting eBPF on Windows (likely by leveraging their ETW work) 8.

6https://ebpf.io/blog/ebpf-updates-2021-02
7https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
8https://microsoft.github.io/ebpf-for-windows/

22

https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://microsoft.github.io/ebpf-for-windows/


Both ETW and eBPF should provide ample existing meta-data from
which to draw upon. Combined with the Personal Digital Tracing tools [36],
there is a rich set of existing meta-data from which to draw upon, making
the design and implementation of the tools I need to test my thesis simpler.

23



24



Chapter 3

Research Questions

For every particular thing to have a name is impossible. —
First, it is beyond the power of human capacity to frame and
retain distinct ideas of all the particular things we meet with:

every bird and beast men saw; every tree and plant that affected
the senses, could not find a place in the most capacious

understanding. — John Locke, An Essay Concerning Human
Understanding [54]

The goal of my research is to develop a framework for gathering and
disseminating rich data tracking activity across a user’s silos and devices to
facilitate end-user finding. While the evaluation of these finding questions
lies in the domain of HCI researchers, my research must enable the collection,
aggregation, storage, and querying the data that these researchers can use
to evaluate different finding approaches. Thus, my research will answer the
following questions:

1. What data comprises activity context? As previously observed
(Section 2.2) there is a wealth of potential information that could
be included in the activity context. This question asks: “what data
should be included in the activity context?”

2. How do we capture activity context? While there are numerous
different potential sources for activity information, how do we capture
and store it?

3. How do we collect rich data (including activity context) from
multiple storage silos and make that rich data accessible effi-
ciently? We know from prior work that one can capture all state for a

25



single computer system with surprisingly moderate cost [55], but that
approach does not make the collected state easily available. Thus, col-
lecting and storing the rich data is not sufficient, we also need to make
it accessible to applications. How do we make it available to applica-
tions in a manner whereby the benefits of better findability outweigh
any impact on application performance?

4. How do we facilitate query of this rich meta-data? It is im-
portant that both users and applications have a mechanism via which
they can exploit this extensive collection of rich meta-data. What does
the query interface for this rich meta-data look like?

5. How can applications leverage this rich meta-data? Appli-
cations must programmatically find the documents with which they
interact. Most applications use temporal relationships, such as “re-
cently accessed documents,” as a primary mechanism to present users
with a set of files they might wish to access. When that fails, they fall
back to offering the user files in a directory or list that the application
deems ‘likely’. This question asks: “if an application has access to
activity context data, how can it use the information to give users a
better collection of candidate files from which to select?”

6. How do we preserve the privacy of sensitive meta-data? In a
model that incorporates extensive amounts of personally identifiable
information there is a very real risk that this information will prove to
be economically valuable to someone; how do we ensure that the user
retains ownership and control of that information so that it is only
released when they approve doing so?

I intend to provide data that will allow other researchers to answer re-
lated questions such as:

• What relationships are most valuable in helping users find data?

• Does activity context provide better information for user search than
semantic information alone?

• What interfaces best allow users to leverage rich meta-data search
capabilities?

The questions themselves that are core to my proposed thesis work re-
volve around exploring and broadening the of an activity context. However,

26



activity context by itself does not replace the other prior work that has
added semantic understanding around files, e.g., semantic file systems, for-
mal concept analysis, tag file systems, graph file systems, etc. Thus, my
proposed system (Chapter 4) includes support for this prior work but ex-
tends it by augmenting previous mechanisms with this additional rich usage
information that I call “activity context.”

27



28



Chapter 4

Architecture

We are like dwarfs on the shoulders of giants, so that we can
see more than they, and things at a greater distance, not by

virtue of any sharpness of sight on our part, or any physical
distinction, but because we are carried high and raised up by

their giant size. — Metalogicon (1159) John of Salisbury.

My goal with this architecture is to capture a broad description of the
services I anticipate are required to achieve my goals. To that end, my
architecture seeks to provide a broad framework on which my own work as
well as potential future work can be constructed.

My focus in supporting my thesis will include building specific, likely
limited, implementations of tools that fit within my architecture. These tools
will then allow me to answer the research questions described in Chapter 3.

In keeping with good software architectural principles, I strive to ensure
the architecture is sufficiently general and not necessarily tailored narrowly
to my particular task: that narrowing can be done as part of my own tool
development.

4.1 Features
The tool I propose constructing incorporates support for existing function-
ality as well as the new functionality that I propose adding. In Table 4.1 I
have set out the specific features that I anticipate providing by the tool. In
turn, I use these features when constructing my proposed architecture.

29



Feature Existing Technologies No Solution

activity
context

timestamps and geo-location,
image recognition, browsing
history, ticketing systems,
application-specific solutions
like Burrito [2].

Link related activity across
apps, record browsing history
and chat conversations rele-
vant to the creation of the data
object, storing it in ways that
are secure and compact.

cross-silo
search

Search by name, creator, con-
tent across silos, app-specific
searches (e.g., Spotlight)

Unified search across all kinds
of storage, including file sys-
tems, object stores, apps and
devices

data rela-
tionships

De-duplication of documents,
versioning of specific files, git
ancestor relation

Explicit notion of data iden-
tity, tracking different versions
across different silos as data is
transformed

notifica-
tions

File watchers (INotify), syn-
chronization status, manually
inspecting modified time

Ability to subscribe to specific
changes on attributes

personalized
namespace

Hierarchy plus hard/soft links.
Use of tags.

Creating personalized name-
spaces with flexible data orga-
nization and views

Table 4.1: Use-case driven functional requirements.

4.1.1 Activity Context
As Burrito demonstrated [2], the context in which data were accessed or
created is often a useful attribute on which users wish to search, e.g., “I’m
looking for the document I was editing while emailing Aki about their favorite
wines.”

To the best of our knowledge, there is no modern system that supports
queries using rich context across applications.

I might be able to use timestamps or application-specific tags or history
information in queries, but it is laborious, if not impossible, to intersect data
from multiple applications and/or multiple silos.

4.1.2 Cross-silo Search
Users share documents in myriad ways: via messaging applications, on cloud
storage services, and via online applications. Users should not need to re-

30



member which mechanism was used to share a particular document and
should have some easy way of organizing and searching through a collection
of such distributed documents.

4.1.3 Data Relationships
Documents can be related in arbitrary ways. This relationship information
can be used to facilitate and enable better search results. So far, I have
identified three specific relationships that are particularly important:

1. copy is a bit-for-bit identical replica of some data, in other words two
items with different names store the same data. Deduplication func-
tionality in storage systems frequently takes advantage of the preva-
lence of copies to reduce storage consumption. However, knowing that
two items with different names are, in fact, the same is also valuable
information for users.

2. conversion is a reversible, repeatable transformation that changes the
representation of data, without changing its semantics, e.g., converting
a CSV file into JSON.

3. derivation refers to data that has been computationally derived from
another object by altering its content, e.g., adding a row to a spread-
sheet.

Classifying the relationship in such cases may not be obvious: if I export
an Excel format spreadsheet as a CSV file, I may lose data such that the
relationship is a derivation rather than a conversion. A conservative imple-
mentation would thus define this as a derivation in the absence of knowledge
that an inverse transformation exists.

While storage systems can recognize copies, they cannot distinguish con-
versions from derivations. However, from a user’s perspective, these opera-
tions are quite different: a conversion can be repeated, which is not neces-
sarily true of a derivation.

4.1.4 Notifications
Users frequently want to be notified when documents change, and many
storage services offer this functionality.

However, users might also want notification when data on which they
directly or indirectly depend changes. This requires both a notification
system and an awareness of the data relationship between different objects.

31



4.1.5 Personalized Namespaces
Users have different preferences and mental models to organize their docu-
ments, frequently a source of conflict in a multi-user setting. I need a way
to provide each user the ability to personalize their document structure.

4.1.6 From Use Cases to Architecture
Recall that in Section 1.4 I provided a series of use cases for consideration.
Each use case and feature presents a situation that cannot be solved with
our existing mechanisms within the context of the multi-silo world.

In Table 4.1, I identify existing technology that can be brought to bear
on the problem, while teasing apart the precise details that are missing.

Repeatedly, I find that critical information necessary to provide a fea-
ture is unavailable, that providing such information is non-trivial, and that
obtaining it creates a collection of privacy challenges.

4.2 Proposed Architecture
Indaleko is a family of services that enable sophisticated search and naming
capabilities. The key features that differentiate Indaleko from prior work
are:

1. incorporating object relationships as first class meta-data,

2. federating meta-data services,

3. recording activity context,

4. integrating storage from multiple silos, and

5. enabling customizable naming services.

Data continues to reside in existing and to-be-developed storage silos.
Indaleko interacts with these silos, collects and captures metadata, and pro-
vides a federated network of metadata and naming services to meet the
needs of the use cases in Table 4.1.

4.3 Indaleko Services
Figure 4.1 illustrates the Indaleko architecture. Indaleko allows for different
deployment scenarios. The five services can be run independently, they can

32



Figure 4.1: Indaleko Architecture (Section 4.2).

be co-located and bundled together to run on a local device, integrated into
an OS, or available as web-based services.

In the balance of this section, parenthesized numbers and letters refer to
the arrows in Figure 4.1. There are five main components:

1. Metadata servers (MS) are responsible for storing attributes and
provide a superset of capabilities found in existing metadata services [26],
[56]. Users can register a Metadata Server with activity monitors or
attribute services, which allows the Metadata Server to receive up-
dated attributes from storage objects and activities (B). Thus, there
can be multiple sources of attributes including the user itself. Meta-
data servers may retain the full or partial history of attribute updates
or maintain only the most recent value.

2. Namespace servers (NS) connect to one or more Metadata Server
and use the metadata to provide users with a personalized namespace
that allows both manual organization (i.e., a hierarchical namespace)
and rich search capabilities. The benefit of supporting a hierarchi-
cal namespace is that it provides a path for backwards compatibility
as well as a mechanism for enabling virtual directories [14] to enable
existing applications to benefit from the enhanced capabilities of In-
daleko. The benefit of rich search capabilities is that it enables us to

33



build those virtual directories for use by the hierarchical components as
well as propose and evaluate alternative data exploration tools. Users
can register with a Namespace Server (R) that uses one or more Meta-
data Servers to obtain relevant attributes from them (C). Additionally,
users can be part of a corporate Namespace Server that allows shar-
ing of their select metadata with other users via standard enterprise
public-key cryptography.

3. Activity monitors (AM) run on the user’s devices. Their main
function is to observe temporal relations, activity context, and rela-
tionships between objects on a user’s device and transmit them to a
Metadata Server (D).

4. Attribute services (AS) extract attributes from storage objects and
transmit them to an Metadata Server (B). An Attribute Service might
be invoked on updates, run once or periodically. For example, a file
system Attribute Service would update the object’s metadata with ba-
sic attributes such as size or modification time. There can be many
Attribute Services that extract more “interesting” attributes, e.g., im-
age recognition, similarity, or other classifiers.

5. Update notification server (UNS) provides notification mecha-
nisms. Users can register interest in changes of attributes or underly-
ing storage and will receive a message on change events (A) to which
they have access.

In Figure 4.2 I show a simplified image depicting how this might work
on a single computer system, with data collection from a variety of sources
on the local computer, including resources that are both local to the system
and remote resources accessible and in use on the computer. Information is
ingested by the local Indaleko components and then presented to applica-
tions via a query interface; one likely use of this query interface would be
using it to form “virtual directories” that allow legacy application interac-
tions with the namespace. Unlike Figure 4.1 this diagram omits details of
the internal structure and instead explains one way in which it could fit into
the local device’s environment.

4.4 Indaleko Working Example
To make the Indaleko architecture concrete, I revisit our use-cases from
Table 4.1 and walk through the cases to illustrate how Indaleko supports
the various actions and events.

34



Figure 4.2: Single computer components for Indaleko.

4.4.1 Storing the e-mail attachment
Aki’s act of saving the CSV file that Fenix sent in email corresponds to the
creation of a new object on the cloud storage silo, i.e., the file system (4).
The file server is Indaleko-aware, so the Attribute Service co-located with it
extracts attributes from the document and forwards them to the Metadata
Server (B).

The Activity Monitor on Aki’s laptop detects that the CSV file came via
company email from Fenix. It then captures the activity context identifying
the relationship between the e-mail and the CSV file and transmits it as
additional metadata about the CSV file to the Metadata Server (that already
contains metadata extracted by the Attribute Service). Moreover, because
there is a company-wide namespace service, Indaleko establishes that the
e-mail attachment, the CSV in the file server, and the one on Fenix’s laptop
(from which the file was sent) are exact copies of each other.

Many applications already record some form of activity context, e.g.,
chat history, browsing history. Such histories provide a rich source of ad-
ditional metadata. Other activity context, specifically the relationship be-
tween objects, such as the fact that a particular file was saved to a local
storage device from an email message, requires more pervasive monitoring

35



as found in, e.g., whole provenance capture systems [57]. Indaleko is agnos-
tic about the precise data that comprises activity context, but allows for
storing and accessing activity context as metadata.

4.4.2 Creating the Excel file
Aki opens the comma separated value (CSV) file using Excel and stores
it as a spread sheet. This creates a new object. The Activity Monitor
detects that the newly created spreadsheet is a conversion from the CSV
file, either via a notification from Indaleko-aware Excel or by monitoring
the system calls executed on the local system. Aki proceeds to modify the
data by filtering it in Excel and saving the changes. The Activity Monitor
records this event and updates the meta-data of the spreadsheet to record the
derivation-relationship. Ideally a Indaleko-aware version of Excel specifies
to the Activity Monitor the exact type of the relationship (in this case a
derivation); otherwise the Activity Monitor informs the Metadata Server
about an unspecified data relationship by observing the opening of a CSV
file and a subsequent creation of the Excel file.

Aki proceeds to upload the new Excel file on Slack, which triggers the
creation of a new storage object as Slack creates a local copy, the addition
of new metadata to Metadata Server via the AS, and the addition of a copy
data relationship between the original Excel file and the Slack’s copy. The
Activity Monitor notices (by monitoring Slack chat) that the file was shared
with user Fenix and promptly notifies the Metadata Server, which adds this
detail to its metadata.

Once Aki is done, its local Metadata Server has been updated with three
new objects: the CSV file, the corresponding Excel file, and Slack’s copy of
the Excel file. There is a data relationship linking all three and metadata
informing us that the original CSV came from Fenix and that the final Excel
file was also shared with that same person. If Aki wanted to remember what
happened to the data from the original CSV from Fenix, they could query
their local personal Namespace Server, which would track down this history
by querying the Metadata Server metadata.

4.4.3 Sharing the spreadsheet
Fenix receives the Excel file from Aki via Slack on their phone, a sequence
of metadata events similar to those described earlier takes place, except the
phone does not run a local Namespace Server or Metadata Server. Fenix
now uploads the file to the company’s cloud drive (4). The Metadata Server

36



(by way of the Attribute Service) reflects the creation of a new object and
records its remote location. The use of a company-wide namespace and
metadata service enables Indaleko to record that the file in the cloud drive
is, in fact, a copy of the one received via Slack. Further, Fenix informs their
personal Namespace Server that they wish to notify Aki about all updates
to the file on the cloud drive. Thus, whenever an Attribute Service sends
updated attributes to the Metadata Server, Fenix receives a notification.

The sharing relationship between the personal Namespace Server of Aki
and Fenix, and the exchange of the relevant cryptographic credentials, would
have been set up earlier.

4.4.4 Data origin and delete requests
When the compliance officer asks about the origin of the data, Fenix can
query the corporate Namespace Server to obtain the complete history of the
report. This includes the spreadsheet from which the report was derived
and the e-mail or Slack messages that transmitted the files.

The corporate Namespace Server was configured to be aware of the lo-
cations of the collaborating users’ personal Namespace Server. Moreover,
because of the activity contexts captured by the Activity Monitor, Indaleko
is able to identify documents that were created during any activity involving
the customer whose data must be deleted. Starting from these documents,
and by using the relationship of documents, Dagon was able to find all
relevant objects and delete them, including the e-mail and Slack messages.

Aki would have configured their personal Namespace Server to allow
sharing of the metadata associated with Fenix with their corporate Names-
pace Server, and Fenix would configure their personal Namespace Server
similarly. As a result, when Fenix issues to the corporate Namespace Server
a query asking to trace the origins of the data in the final report, the corpo-
rate Namespace Server is able to return all the history tracing back to the
original CSV file.

Note that unlike existing systems, Indaleko is able to efficiently find
related objects across storage silos. Operating systems already provide users
with indexing services to accelerate search of local files. This search can be
made cross-silo by mounting and enabling indexing on network shares (e.g.,
Windows Desktop Search), or by interfacing with specific applications such
as e-mail (e.g., MacOS Spotlight, or Android search). The problems with
indexing a large remote storage repository are resource limitations such as
bandwidth. In contrast, Indaleko addresses these limitations by delegating
indexing and storage to one or more services.

37



Namespace Servers are responsible for providing efficient search function-
ality. Indaleko uses Attribute Services to keep attributes up to date with
object modifications. Lastly, Indaleko supports coordinated search among
one or more local and remote Namespace Server, allowing, for example, a
user to search across both their local Namespace Server as well as their
employer’s Namespace Server.

38



Chapter 5

Evaluation

For there is nothing lost, that may be found, if sought. —
Edmund Spenser, Finding the Faerie Queene, 1590.

An important aspect of supporting my thesis is to evaluate the system
that I have proposed in Chapter 4 and ensure the proposed system provides
the information necessary to answer my research questions (Chapter 3.)

5.1 Useful Events
Research question 1 asks what constitutes an activity context. Research
question 2 asks how to capture this information. Research question 5 asks
how applications can leverage activity context. These three questions all rely
upon identifying which events are both useful and practical to collect and
aggregate. While prior work has identified events that are of interest I expect
to find additional potentially useful events to collect. Thus, evaluating the
overhead of adding new events to the activity context is useful. Such an
evaluation of the overhead associated with adding activity context would
include: how difficult is it to add a new activity context provider to the
model and how difficult is it to add support for the new activity context in
an existing tool.

I suggest these metrics because they reflect upon the performance of the
architectural model that I set out in Chapter 4.

The prior work, notably the personal information trace work [18], has
publicly available tools that could ease the collection of data. I can then
use my implementation against my own architecture to ensure that resource
cost of collection demonstrates the low overhead that I expect for collecting

39



such data.
Once I have demonstrated that my own tools implemented against my

architecture do not have substantial overhead, I can then look at the com-
plexity of adding additional data collection, using the suggestions in Ta-
ble 2.2 as well as additional information that I can identify as potentially
useful. Identifying such potentially useful activity context data is an area in
which I would expect collaboration could be quite beneficial but I am not
relying upon such collaboration to conduct my own research.

An important metric in evaluating my architecture will be to consider
both the performance cost of adding additional data collection (measured
in performance impact) as well as the development effort (measured in code
size). Thus, I propose collecting that information while I develop the tools
and build extensions to collect additional data.

5.2 Usefuless of Activity Context
Research question 5 asks a critical question underlying my thesis: that ac-
tivity context is itself useful. There is at least one prior work outside the
systems field that indicates it is [37] and thus I reasonably expect that I will
be able to reproduce their results. It seems logical to consider their evalu-
ation methodology as one way to measure the effectiveness of our activity
context driven model. This, however, is not an ideal fit as the personal digi-
tal traces work was evaluated against synthetic existing benchmarks. Thus,
other prior work that suggests other potential metrics including the time it
takes for a user to perform their search and whether or not the search itself
was successful (using the abandonment rate).

Assuming that activity context is useful, a more traditional systems eval-
uation seems justified: what is the cost of collecting and disseminating the
activity context, what is the time to process queries [58], how difficult is it to
add additional activity context providers, and what is the potential added
complexity for applications to utilize activity context.

Note: While I expect there will be substantial benefit to collaborating
with others interested in the human-computer interface (HCI) and infor-
mation retrieval (IR) potential for using my work, based upon consultation
with my supervisors I do not assume that this will be the case. Thus, the
possibility of collaboration has the potential to provide considerable impact
if my research supports my thesis, my thesis proposal is not dependent upon
such collaborative work. Thus, I intend on being sufficiently flexible to take
advantage of collaborative opportunities that do arise, but also realistic in
completing my own work in order to complete my thesis.

40



5.3 Backwards Compatibility
Prior work, such as with semantic file systems [14], has been realized by
using indexing services. Similarly, personal digital traces have been used
to augment indexing services [37], [59]. These works have evaluations for
the effectiveness of their solutions. Thus, virtual directory solutions and
indexing solutions have prior evaluations that can be leveraged to develop
a more extensive evaluation model.

With respect to my own thesis related work, the availability of this type
of indexing and/or virtual directory mechanism would be helpful in under-
standing the costs and performance of my own architecture to ensure that
it can adequately meet the needs of my target tool-building community.

5.4 Access to Activity Context
Research question 4 asks how to provide activity context to enable users and
application developers to exploit the enhanced rich meta-data of Indaleko.
Much of this work relates to performing efficient meta-data queries against
a potentially large collection of such data. There is a strong body of prior
work regarding meta-data queries of both static and dynamic sources [26],
[56], [60]–[70]. The prior work includes a model for providing evaluation.
In addition, file system meta-data query specific research has also created a
framework for evaluation that relates to the performance speed of meta-data
queries [58].

In addition to the performance of such queries, I expect it will also be
useful to determine the generality and ability to form specific queries. My
expectation is that these queries will not ordinarily be initiated directly by
users but it may be useful, as part of evaluating the interface, to determine
if human-provided queries are viable and the level of ease with which they
can be constructed. I expect further refinement on how to evaluate the
flexibility of the query mechanism may be avoided by adopting an existing
query language [71], [72].

5.5 Privacy
Research question 6 asks about how to ensure the privacy of users is pre-
served when capturing detailed personal information in the activity context
I propose recording. Because I have explicitly stated that for my own thesis
work I will be assuming the user maintains complete control of their activ-
ity context, I do not propose any specific model for evaluating this security

41



because it is by design as secure as the user’s own data.
Ensuring privacy of meta-data is an active research area, in terms of

extraction, dissemination, and sharing [73]–[75]. Thus, future work that
is not envisioned as part of my thesis should be done in a context where
emerging work is used to evaluate privacy concerns of a more general meta-
data service.

42



Chapter 6

Conclusion

Collecting, storing, and disseminating information about sys-
tem activity (“activity context”) enables the use of Information
Retrieval (IR) and Human Computer Interface (HCI) research
to build powerful tools to improve human finding of pertinent
digital data.

My proposal sets out a plan to mine existing information that is avail-
able for collection on our own computer systems in order to solve the myr-
iad obstacles that modern storage systems present to human users when
attempting to find specific content.

I will achieve this by creating a flexible systems infrastructure for cap-
turing a broad range of information about the user’s interactions with the
wider world in which the user operates. This will then allow that informa-
tion to be used to facilitate the core user objective of finding, regardless of
device, storage location, or name.

While there is strong evidence for my thesis, it remains to be proven.
Using the system that I develop, I will be able to defend my thesis and
improve the usefulness of computer systems to human users.

43



44



Bibliography

[1] V. Bush et al., “As we may think,” The atlantic monthly, vol. 176,
no. 1, pp. 101–108, 1945 (cit. on pp. 1, 13).

[2] P. J. Guo and M. Seltzer, “Burrito: Wrapping your lab notebook in
computational infrastructure,” in TaPP’12 Proceedings of the 4th
USENIX conference on Theory and Practice of Provenance, 2012,
pp. 7–7 (cit. on pp. 2, 10, 30).

[3] J. C. Mogul, “Representing information about files,” Ph.D.
dissertation, Stanford University, 1986 (cit. on pp. 3, 14).

[4] G. A. I. Barnard and L. Fein, “An information filing and retrieval
system for the engineering and management records of a large-scale
computer development project,” English, American Documentation
(pre-1986), vol. 9, no. 3, p. 208, Jul. 1958, Copyright - Copyright
Wiley Periodicals Inc. Jul 1958; Last updated - 2010-08-27. [Online].
Available: https://search.proquest.com/docview/195441816 (cit. on
p. 3).

[5] R. Daley and P. Neumann, “A general-purpose file system for
secondary storage,” in Proceedings of the November 30–December 1,
1965, fall joint computer conference, part I, ACM, 1965, pp. 213–229
(cit. on pp. 3, 4).

[6] D. M. Ritchie and K. Thompson, “The unix time-sharing system,” in
ACM SIGOPS Operating Systems Review, ACM, vol. 7, 1973, p. 27
(cit. on p. 3).

[7] J. H. Saltzer, “Naming and binding of objects,” in Operating
Systems: An Advanced Course, R. Bayer, R. M. Graham, and
G. Seegmüller, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
1978, pp. 99–208, isbn: 978-3-540-35880-0. doi:
10.1007/3-540-08755-9_4. [Online]. Available:
https://doi.org/10.1007/3-540-08755-9_4 (cit. on pp. 3, 14).

45

https://search.proquest.com/docview/195441816
https://doi.org/10.1007/3-540-08755-9_4
https://doi.org/10.1007/3-540-08755-9_4


[8] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon,
“Design and implementation of the sun network filesystem,” in
Proceedings of the Summer USENIX conference, 1985, pp. 119–130
(cit. on pp. 4, 9).

[9] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M. J. West, “Scale and
performance in a distributed file system,” ACM Transactions on
Computer Systems, vol. 6, no. 1, pp. 51–81, 1988 (cit. on pp. 4, 9).

[10] R. Levin and M. D. Schroeder, “Transport of electronic messages
through a network,” Xerox. Palo Alto Research Center, Tech. Rep.,
1979 (cit. on p. 4).

[11] A. Z. Spector, “Performing remote operations efficiently on a local
computer network,” in Proceedings of the Eighth ACM Symposium
on Operating Systems Principles, ser. SOSP ’81, Pacific Grove,
California, USA: Association for Computing Machinery, 1981,
pp. 76–77, isbn: 0897910621. doi: 10.1145/800216.806594. [Online].
Available: https://doi.org/10.1145/800216.806594 (cit. on p. 4).

[12] A. D. Birrell, R. Levin, M. D. Schroeder, and R. M. Needham,
“Grapevine: An exercise in distributed computing,” Communications
of The ACM, vol. 25, no. 4, pp. 260–274, 1982 (cit. on p. 4).

[13] K. J. Vicente, B. C. Hayes, and R. C. Williges, “Assaying and
isolating individual differences in searching a hierarchical file
system,” Human factors, vol. 29, no. 3, pp. 349–359, 1987 (cit. on
pp. 4, 10).

[14] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O’Toole,
“Semantic file systems,” in Proceedings of the Thirteenth ACM
Symposium on Operating Systems Principles, ser. SOSP ’91, Pacific
Grove, California, USA: Association for Computing Machinery, 1991,
pp. 16–25, isbn: 0897914473. doi: 10.1145/121132.121138. [Online].
Available: https://doi.org/10.1145/121132.121138 (cit. on pp. 4, 14,
18, 33, 41).

[15] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank
citation ranking: Bringing order to the web.,” Stanford InfoLab,
Tech. Rep., 1999 (cit. on p. 4).

[16] A. Bosch, T. Bogers, and M. Kunder, “Estimating search engine
index size variability: A 9-year longitudinal study,” Scientometrics,
vol. 107, no. 2, pp. 839–856, 2016 (cit. on p. 5).

46

https://doi.org/10.1145/800216.806594
https://doi.org/10.1145/800216.806594
https://doi.org/10.1145/121132.121138
https://doi.org/10.1145/121132.121138


[17] R. Sandberg, “The sun network file system: Design, implementation
and experience,” in in Proceedings of the Summer 1986 USENIX
Technical Conference and Exhibition, Citeseer, 1986 (cit. on p. 6).

[18] D. Q. de Campos Vianna, “Searching heterogenous personal data,”
Ph.D. dissertation, Rutgers University, 2019 (cit. on pp. 6, 17, 39).

[19] J. Chen, H. Guo, W. Wu, and C. Xie, “Search your memory�! - an
associative memory based desktop search system,” in Proceedings of
the 2009 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD ’09, Providence, Rhode Island, USA:
Association for Computing Machinery, 2009, pp. 1099–1102, isbn:
9781605585512. doi: 10.1145/1559845.1559992. [Online]. Available:
https://doi.org/10.1145/1559845.1559992 (cit. on pp. 6, 10).

[20] S. Dumais, E. Cutrell, J. J. Cadiz, G. Jancke, R. Sarin, and
D. C. Robbins, “Stuff i’ve seen: A system for personal information
retrieval and re-use,” in ACM SIGIR Forum, ACM, vol. 49, 2016,
pp. 28–35 (cit. on p. 6).

[21] P. Chakriswaran, D. R. Vincent, K. Srinivasan, V. Sharma,
C.-Y. Chang, and D. G. Reina, “Emotion ai-driven sentiment
analysis: A survey, future research directions, and open issues,”
Applied Sciences, vol. 9, no. 24, p. 5462, 2019 (cit. on p. 7).

[22] Y. Li, Y. Jiang, D. Tian, L. Hu, H. Lu, and Z. Yuan, “Ai-enabled
emotion communication,” IEEE Network, vol. 33, no. 6, pp. 15–21,
2019. doi: 10.1109/MNET.001.1900070 (cit. on p. 7).

[23] D. M. Ritchie and K. Thompson, “The unix time-sharing system,”
Commun. ACM, vol. 17, no. 7, pp. 365–375, Jul. 1974, issn:
0001-0782. doi: 10.1145/361011.361061. [Online]. Available:
https://doi.org/10.1145/361011.361061 (cit. on p. 9).

[24] I. Digital and Xerox, “The ethernet, a local area network. data link
layer and physical layer specifications,” 1980. [Online]. Available:
http://decnet.ipv7.net/docs/dundas/aa-k759b-tk.pdf (cit. on p. 9).

[25] A. N. Bessani, R. Mendes, T. Oliveira, N. F. Neves, M. Correia,
M. Pasin, and P. Verissimo, “Scfs: A shared cloud-backed file
system.,” in USENIX Annual Technical Conference, Citeseer, 2014,
pp. 169–180 (cit. on p. 9).

47

https://doi.org/10.1145/1559845.1559992
https://doi.org/10.1145/1559845.1559992
https://doi.org/10.1109/MNET.001.1900070
https://doi.org/10.1145/361011.361061
https://doi.org/10.1145/361011.361061
http://decnet.ipv7.net/docs/dundas/aa-k759b-tk.pdf


[26] C. Wang, K. Thareja, M. Stealey, P. Ruth, and I. Baldin, “Comet: A
distributed metadata service for federated cloud infrastructures,” in
2019 IEEE High Performance Extreme Computing Conference
(HPEC), 2019, pp. 1–7. doi: 10.1109/HPEC.2019.8916536 (cit. on
pp. 9, 10, 33, 41).

[27] K. J. Vicente and R. C. Williges, “Accommodating individual
differences in searching a hierarchical file system,” International
Journal of Human-computer Studies International Journal of
Man-machine Studies, vol. 29, no. 6, pp. 647–668, 1988 (cit. on
p. 10).

[28] J. Benet, “Ipfs - content addressed, versioned, p2p file system.,”
arXiv preprint arXiv:1407.3561, 2014 (cit. on p. 10).

[29] D. Bermbach, M. Klems, S. Tai, and M. Menzel, “Metastorage: A
federated cloud storage system to manage consistency-latency
tradeoffs,” in 2011 IEEE 4th International Conference on Cloud
Computing, 2011, pp. 452–459. doi: 10.1109/CLOUD.2011.62 (cit. on
p. 10).

[30] S. Sivasubramanian, “Amazon dynamodb: A seamlessly scalable
non-relational database service,” in Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data,
ser. SIGMOD ’12, Scottsdale, Arizona, USA: Association for
Computing Machinery, 2012, pp. 729–730, isbn: 9781450312479. doi:
10.1145/2213836.2213945. [Online]. Available:
https://doi.org/10.1145/2213836.2213945 (cit. on p. 10).

[31] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken,
J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer, and
R. P. Wattenhofer, “Farsite: Federated, available, and reliable
storage for an incompletely trusted environment,” SIGOPS Oper.
Syst. Rev., vol. 36, no. SI, pp. 1–14, Dec. 2003, issn: 0163-5980. doi:
10.1145/844128.844130. [Online]. Available:
https://doi.org/10.1145/844128.844130 (cit. on p. 10).

[32] P. Dourish, W. K. Edwards, A. LaMarca, J. Lamping, K. Petersen,
M. Salisbury, D. B. Terry, and J. Thornton, “Extending document
management systems with user-specific active properties,” ACM
Trans. Inf. Syst., vol. 18, no. 2, pp. 140–170, Apr. 2000, issn:
1046-8188. doi: 10.1145/348751.348758. [Online]. Available:
https://doi.org/10.1145/348751.348758 (cit. on p. 10).

48

https://doi.org/10.1109/HPEC.2019.8916536
https://doi.org/10.1109/CLOUD.2011.62
https://doi.org/10.1145/2213836.2213945
https://doi.org/10.1145/2213836.2213945
https://doi.org/10.1145/844128.844130
https://doi.org/10.1145/844128.844130
https://doi.org/10.1145/348751.348758
https://doi.org/10.1145/348751.348758


[33] S. Shah, C. A. N. Soules, G. R. Ganger, and B. D. Noble, “Using
provenance to aid in personal file search,” in 2007 USENIX Annual
Technical Conference on Proceedings of the USENIX Annual
Technical Conference, ser. ATC’07, Santa Clara, CA: USENIX
Association, 2007 (cit. on pp. 10, 17).

[34] D. Van Aken, A. Pavlo, G. J. Gordon, and B. Zhang, “Automatic
database management system tuning through large-scale machine
learning,” in Proceedings of the 2017 ACM International Conference
on Management of Data, ser. SIGMOD ’17, Chicago, Illinois, USA:
Association for Computing Machinery, 2017, pp. 1009–1024, isbn:
9781450341974. doi: 10.1145/3035918.3064029. [Online]. Available:
https://doi.org/10.1145/3035918.3064029 (cit. on p. 10).

[35] K. Briney, Data Management for Researchers: Organize, maintain
and share your data for research success. 2015 (cit. on p. 14).

[36] D. Vianna, A.-M. Yong, C. Xia, A. Marian, and T. Nguyen, “A tool
for personal data extraction,” in 2014 IEEE 30th International
Conference on Data Engineering Workshops, 2014, pp. 80–83 (cit. on
pp. 17, 23).

[37] D. Vianna, V. Kalokyri, A. Borgida, T. D. Nguyen, and A. Marian,
“Searching heterogeneous personal digital traces,” in Proceedings of
the Association for Information Science and Technology, vol. 56,
2019, pp. 276–285 (cit. on pp. 16–18, 20, 40, 41).

[38] J. Kim and W. B. Croft, “Retrieval experiments using
pseudo-desktop collections,” in Proceedings of the 18th ACM
conference on Information and knowledge management, 2009,
pp. 1297–1306 (cit. on p. 17).

[39] C. A. Soules and G. R. Ganger, “Connections: Using context to
enhance file search,” in Proceedings of the twentieth ACM symposium
on operating systems principles, 2005, pp. 119–132 (cit. on p. 17).

[40] J. M. Hellerstein, V. Sreekanti, J. E. Gonzalez, J. Dalton, A. Dey,
S. Nag, K. Ramachandran, S. Arora, A. Bhattacharyya, S. Das, et
al., “Ground: A data context service.,” in CIDR, Citeseer, 2017
(cit. on pp. 17, 19).

[41] J. Gemmell, G. Bell, R. Lueder, S. Drucker, and C. Wong,
“Mylifebits: Fulfilling the memex vision,” in Proceedings of the tenth
ACM international conference on Multimedia, 2002, pp. 235–238
(cit. on pp. 17, 19).

49

https://doi.org/10.1145/3035918.3064029
https://doi.org/10.1145/3035918.3064029


[42] V. Kalokyri, A. Borgida, A. Marian, and D. Vianna, “Integration
and exploration of connected personal digital traces,” in Proceedings
of the ExploreDB’17, 2017, p. 3 (cit. on p. 17).

[43] O. Bergman, T. Israeli, and S. Whittaker, “Search is the future? the
young search less for files,” in Proceedings of the Association for
Information Science and Technology, vol. 56, 2019, pp. 360–363
(cit. on pp. 16, 18).

[44] C. M. Brown, Human-computer interface design guidelines. Intellect
Books, 1999 (cit. on p. 18).

[45] O. Bergman, T. Israeli, and S. Whittaker, “Factors hindering shared
files retrieval,” Aslib Journal of Information Management, vol. 72,
no. 1, pp. 130–147, 2019 (cit. on p. 18).

[46] H. Ritzdorf, N. Karapanos, and S. Čapkun, “Assisted deletion of
related content,” in Proceedings of the 30th Annual Computer
Security Applications Conference, 2014, pp. 206–215 (cit. on p. 18).

[47] F. Vitale, “Personal data curation in the cloud age�: Individual
differences and design opportunities,” Ph.D. dissertation, University
of British Columbia, 2020. doi:
http://dx.doi.org/10.14288/1.0392427. [Online]. Available:
https://open.library.ubc.ca/collections/ubctheses/24/items/1.0392427
(cit. on p. 18).

[48] C. A. Soules and G. R. Ganger, “Why can’t i find my files?: New
methods for automating attribute assignment,” in HotOS, 2003,
pp. 115–120 (cit. on p. 18).

[49] S. Dumais, E. Cutrell, J. J. Cadiz, G. Jancke, R. Sarin, and
D. C. Robbins, “Stuff i’ve seen: A system for personal information
retrieval and re-use,” in Proceedings of the 26th annual international
ACM SIGIR conference on Research and development in informaion
retrieval, vol. 49, 2003, pp. 28–35 (cit. on p. 19).

[50] A. Collins, T. Apted, and J. Kay, “Tabletop file system access:
Associative and hierarchical approaches,” in Second Annual IEEE
International Workshop on Horizontal Interactive Human-Computer
Systems (TABLETOP’07), IEEE, 2007, pp. 113–120 (cit. on p. 19).

[51] C. Bolchini, C. A. Curino, E. Quintarelli, F. A. Schreiber, and
L. Tanca, “A data-oriented survey of context models,” ACM Sigmod
Record, vol. 36, no. 4, pp. 19–26, 2007 (cit. on p. 20).

50

https://doi.org/http://dx.doi.org/10.14288/1.0392427
https://open.library.ubc.ca/collections/ubctheses/24/items/1.0392427


[52] M. Greenberg, “Files-as-filesystems for posix shell data processing,”
in Proceedings of the 11th Workshop on Programming Languages and
Operating Systems, ser. PLOS ’21, Virtual Event, Germany:
Association for Computing Machinery, 2021, pp. 17–23, isbn:
9781450387071. doi: 10.1145/3477113.3487265. [Online]. Available:
https://doi.org/10.1145/3477113.3487265 (cit. on p. 20).

[53] R. Kadekodi, S. Kadekodi, S. Ponnapalli, H. Shirwadkar,
G. R. Ganger, A. Kolli, and V. Chidambaram, “Winefs: A
hugepage-aware file system for persistent memory that ages
gracefully,” in Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles CD-ROM, 2021, pp. 804–818 (cit. on
p. 20).

[54] J. Locke, Locke’s essays: An essay concerning human understanding,
and A treatise on the conduct of the understanding (Complete in 1
volume with the author’s last additions and corrections). 1844 (cit. on
p. 25).

[55] D. Devecsery, M. Chow, X. Dou, J. Flinn, and P. M. Chen, “Eidetic
systems,” in 11th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 14), 2014, pp. 525–540 (cit. on
p. 26).

[56] Y. Hua, H. Jiang, Y. Zhu, D. Feng, and L. Tian, “Smartstore: A new
metadata organization paradigm with semantic-awareness for
next-generation file systems,” in Proceedings of the Conference on
High Performance Computing Networking, Storage and Analysis,
2009, pp. 1–12. doi: 10.1145/1654059.1654070 (cit. on pp. 33, 41).

[57] T. Pasquier, X. Han, M. Goldstein, T. Moyer, D. Eyers, M. Seltzer,
and J. Bacon, “Practical whole-system provenance capture,” in
Symposium on Cloud Computing (SoCC’17), ACM, 2017 (cit. on
p. 36).

[58] S. Ames, M. Gokhale, and C. Maltzahn, “Qmds: A file system
metadata management service supporting a graph data model-based
query language,” International Journal of Parallel, Emergent and
Distributed Systems, vol. 28, no. 2, pp. 159–183, 2013 (cit. on pp. 40,
41).

[59] L. Xu, Z. Huang, H. Jiang, L. Tian, and D. Swanson, “VSFS: A
searchable distributed file system,” Proceedings of PDSW 2014: 9th
Parallel Data Storage Workshop - Held in Conjunction with SC
2014: The International Conference for High Performance

51

https://doi.org/10.1145/3477113.3487265
https://doi.org/10.1145/3477113.3487265
https://doi.org/10.1145/1654059.1654070


Computing, Networking, Storage and Analysis, pp. 25–30, 2014. doi:
10.1109/PDSW.2014.10 (cit. on p. 41).

[60] T. Strong and P. Akundi, “A Semantic Cloud for File System
Annotation,” pp. 1–4, (cit. on p. 41).

[61] F. Revol, “Universal file system extended attributes namespace,” in
International Conference on Dublin Core and Metadata Applications,
2011, pp. 69–73 (cit. on p. 41).

[62] J. Liu, D. Feng, Y. Hua, B. Peng, P. Zuo, and Y. Sun, “P-index: An
efficient searchable metadata indexing scheme based on data
provenance in cold storage,” in International Conference on
Algorithms and Architectures for Parallel Processing, Springer, 2015,
pp. 597–611 (cit. on p. 41).

[63] Z. Huo, L. Xiao, Q. Zhong, S. Li, A. Li, L. Ruan, S. Wang, and L. Fu,
“Mbfs: A parallel metadata search method based on bloomfilters
using mapreduce for large-scale file systems,” The Journal of
Supercomputing, vol. 72, no. 8, pp. 3006–3032, 2016 (cit. on p. 41).

[64] M. Suguna and T. Anand, “Dynamic Metadata Management in
Semantic File Systems,” vol. 5, no. 3, pp. 44–47, 2015 (cit. on p. 41).

[65] A. Parker-Wood, D. D. E. Long, E. Miller, P. Rigaux, and
A. Isaacson, “A File By Any Other Name: Managing File Names
with Metadata,” Proceedings of International Conference on Systems
and Storage, pp. 1–11, 2014 (cit. on p. 41).

[66] R. Watson, S. Dekeyser, and N. Albadri, “Exploring the design space
of metadata-focused file management systems,” in Proceedings of the
Australasian Computer Science Week Multiconference, ACM, 2017,
p. 20 (cit. on p. 41).

[67] A. Leung, I. Adams, and E. L. Miller, “Magellan: A searchable
metadata architecture for large-scale file systems,” University of
California, Santa Cruz, Tech. Rep. UCSC-SSRC-09-07, 2009 (cit. on
p. 41).

[68] A. W. Leung, M. Shao, T. Bisson, S. Pasupathy, and E. L. Miller,
“Spyglass: Fast, scalable metadata search for large-scale storage
systems.,” in FAST, vol. 9, 2009, pp. 153–166 (cit. on p. 41).

[69] S. Niazi, M. Ismail, S. Haridi, J. Dowling, S. Grohsschmiedt, and
M. Ronström, “Hopsfs: Scaling hierarchical file system metadata
using newsql databases.,” in FAST, 2017, pp. 89–104 (cit. on p. 41).

52

https://doi.org/10.1109/PDSW.2014.10


[70] R. V. H. Van Staereling, R. Appuswamy, D. C. van Moolenbroek,
and A. S. Tanenbaum, “Efficient, modular metadata management
with loris,” in Networking, Architecture and Storage (NAS), 2011 6th
IEEE International Conference on, IEEE, 2011, pp. 278–287 (cit. on
p. 41).

[71] N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker,
V. Marsault, S. Plantikow, M. Rydberg, P. Selmer, and A. Taylor,
“Cypher: An evolving query language for property graphs,” in
Proceedings of the 2018 International Conference on Management of
Data, ACM, 2018, pp. 1433–1445 (cit. on p. 41).

[72] O. van Rest, S. Hong, J. Kim, X. Meng, and H. Chafi, “Pgql: A
property graph query language,” in Proceedings of the Fourth
International Workshop on Graph Data Management Experiences
and Systems, ACM, 2016, p. 7 (cit. on p. 41).

[73] M. Eviette and A. Simpson, “Towards models for privacy
preservation in the face of metadata exploitation,” in Privacy and
Identity Management, M. Friedewald, S. Schiffner, and S. Krenn,
Eds., Cham: Springer International Publishing, 2021, pp. 247–264,
isbn: 978-3-030-72465-8 (cit. on p. 42).

[74] S. Eskandarian, H. Corrigan-Gibbs, M. Zaharia, and D. Boneh,
“Express: Lowering the cost of metadata-hiding communication with
cryptographic privacy,” in 30th {USENIX} Security Symposium
({USENIX} Security 21), 2021, pp. 1775–1792 (cit. on p. 42).

[75] V. I. Budzko, D. Melnikov, V. Korolev, V. G. Belenkov, and
P. A. Keyer, “Architecture solutions for the metadata extraction
toolkit, taking into account the built-in privacy extracts,” in CEUR
Workshop Proceedings, 2019, pp. 3–9 (cit. on p. 42).

53



54


	Abstract
	1 Introduction
	1.1 Activity Context
	1.2 Thesis
	1.3 Finding
	1.4 Use Cases
	1.5 Existing Solutions Fall Short
	1.6 Contributions

	2 Background
	2.1 The Importance of Finding
	2.2 Useful Information for Finding
	2.3 Storage Silo Access
	2.4 Existing Meta-Data

	3 Research Questions
	4 Architecture
	4.1 Features
	4.1.1 Activity Context
	4.1.2 Cross-silo Search
	4.1.3 Data Relationships
	4.1.4 Notifications
	4.1.5 Personalized Namespaces
	4.1.6 From Use Cases to Architecture

	4.2 Proposed Architecture
	4.3 Indaleko Services
	4.4 Indaleko Working Example
	4.4.1 Storing the e-mail attachment
	4.4.2 Creating the Excel file
	4.4.3 Sharing the spreadsheet
	4.4.4 Data origin and delete requests


	5 Evaluation
	5.1 Useful Events
	5.2 Usefuless of Activity Context
	5.3 Backwards Compatibility
	5.4 Access to Activity Context
	5.5 Privacy

	6 Conclusion

