
PERCIPIENCE: ASSOCIATIVE FILE SYSTEMS FOR

UNSTRUCTURED DATA RELATIONSHIPS

Presented by: Tony Mason

P H D S T U D E N T
S U P E R V I S O R S : N O R M H U T C H I N S O N , A L E X A N D R A F E D O R O V A , A N D R E W W A R F I E L D

Presenter
Presentation Notes
Basic observation: Finding the relevant file is increasingly difficult.

2

DO WE NEED FILE SYSTEMS ANYMORE?

App-based environments, with silos

Proposal: eliminate file systems entirely
• Applications are assigned raw disk space
• Choose best storage model
• Data sharing via copying

Observation: common functionality across applications that requires trust are the proper domain
of the operating system.

Presenter
Presentation Notes
How do we determine when something is a proper system function versus an application function.

3

FILE SYSTEM NAMESPACES HAVE NOT EVOLVED

Storage has evolved

Two namespace consumers: applications and users
• Applications don’t need hierarchical names
• Applications can embed data schema in their hierarchical names
• Users use names to embed semantic information

Key-Value store

Enhanced data location

4

MODELS OF FILE SYSTEM NAME SPACES

Presenter
Presentation Notes
File system model was – literally – based upon the model of physical filing systems.

5

MULTICS: FORMALIZE HIERARCHY

Presenter
Presentation Notes
Multics – the common ancestor of modern operating systems – incorporated the hierarchical organization model

6

MULTICS – ADD LINKS

Presenter
Presentation Notes
Then, in the same paper added a non-hierarchical model. This is a tacit admission of limitations or problems in the model. The model was “good enough”.

7

USERS STRUGGLE TO FIND THINGS

Presenter
Presentation Notes
Of course, the systems community knows that nobody uses GUIs, so they don’t really matter.

8

FILES WITHOUT USEFUL INFORMATION IN THEIR NAMES

Presenter
Presentation Notes
Applications don’t necessarily have semantic understanding of file content (but users often do). Not realistic to expect users to add semantic information.

9

INDEXING INFORMATION WITH MULTIPLE PRIMARY ATTRIBUTES

Presenter
Presentation Notes
How to organize information when it has multiple organizational models? Music organization?
Answer: let’s make it an application problem.

10

APPS: STRINGS ATTACHED

Lock-in

DRM/Rights/Commercial
Interests

Cloud-driven

Limited cross-app support

Presenter
Presentation Notes
Apps are narrowly focused. Increasingly they “lock you in” to their model, including commercial interests, or rely upon cloud driven analysis.
Apps don’t offer cross-file support generally…

11

WHICH APP IS RESPONSIBLE?

Presenter
Presentation Notes
In the real world, our information flows in form and between applications; it originates form a variety of sources. How does one application capture this lifecycle?

12

PROBLEM IS INTENSIFYING

Presenter
Presentation Notes
Exacerbating the situation: the sheer volume of data is growing. How many people delete photos from their phones?

13

POSSIBLE SOLUTION: SEMANTIC FILE SYSTEMS

Presenter
Presentation Notes
Prior work: semantic file systems. This is where I started.
Observation: semantic information is challenging to extract automatically.
Focuses on attributes of files, does not capture flow of information between files.

14

POSSIBLE SOLUTION: SEMANTIC FS + TAGGING

Presenter
Presentation Notes
Tagging on top of hierarchical file systems: been there, done that.

15

POSSIBLE SOLUTION: PROVENANCE

Presenter
Presentation Notes
Provenance captures flow of information in an automated fashion.

16

SIMPLISTIC USER SEARCH TOOLS

Presenter
Presentation Notes
User search tools: allow searching attributes of existing files. No mechanism for evaluating data relationship (flow, provenance, inheritance, versioning).

17

SOPHISTICATED SYSTEMS SEARCH TOOLS

Presenter
Presentation Notes
Systems people know that GUIs are the past…

18

SEARCH LIMITATIONS

“I’m looking for that document I write last summer after I came back from holiday in Burkina Faco”

“I know this PDF came from an e-mail, show me that e-mail.”

“I moved the linked content for this poster… how do I find it?”

“Show me the files that I access most.”

“Is that document on Dropbox, my laptop, my desktop, Google Drive, or somewhere else?”

“Show me the other documents I accessed while doing my taxes in 2016.”

Presenter
Presentation Notes
Search in general has serious limitations.

19

PRIMITIVE SEARCH: A CURATED INDEXED LIST

20

PAGERANK: AUTOMATE WEB INDEXING

Searching the web: return an answer

Searching our own data: return the answer

Subtly different

Presenter
Presentation Notes
How did we solve this on the internet?

21

NEW IDEA: FILE RELATIONSHIP GRAPH

Immutable Names (Identifiers)

Files are vertices

Edges are relationships
• System Defined
• Application Defined

Graph Queries

Presenter
Presentation Notes
New approach: “Facebook for Data”
Must support existing semantics.
Offer new search mechanisms – find the answer.

22

GOAL: ADDRESS MULTIPLE NEEDS USING GRAPHS

Presenter
Presentation Notes
Associative file systems: addressing existing semantics, bridging to a mechanism that provides enhanced functionality without sacrificing performance or compatibility.

24

25

26

INTERNET SEARCH

Internet Search
• Recent index of content
• Focused on structured documents (HTTP, XML, etc.)
• Use link counts as a proxy for relevance

Goal: to return a useful answer

27

LOCAL SEARCH

Current:
• Emphasis is on what something is (e.g., attribute search)
• Links for “multiple relationships”

Challenges:
• Users do not always remember specific searchable attributes
• Work flows obscure movement
• Detritus is exposed in the file system (“try to hide”)
• Names are mutable, leads to broken links

28

GRAPHICAL HISTORY OF FILE SYSTEMS

29

POSIX FILE SYSTEMS

POSIX (IEEE 1003.1) is a formal specification of behavior for “portable operating systems”
• Codified existing UNIX functionality (1988)
• Has evolved somewhat in the intervening years
• Include file system semantics (open, close, read, write)

Benefits:
• Allows good portability of applications across POSIX systems
• Provides a range of useful services for dealing with files and directories

• Symbolic links
• Hard links
• Asynchronous I/O (aio_* - added to POSIX)

30

POSIX FILE SYSTEMS (2)

Disadvantages
• Expensive behaviors (e.g., path based access validation)
• Difficult to enhance

• Key/Value storage
• Semantic search
• Change journaling
• HPC extensions: abandoned due to inability to find consensus

• Esoteric features
• Shared file descriptor semantics (file pointer)

31

PRIOR WORK

Network File System – “we’re on a network, so we’ll try as best we can”
Andrew File System – “we’re on a network, we’re going to make you think we’re local”
Tiger (and others) – “we’re focused on media, we don’t care about POSIX”
UFO – “let’s add extensions at user mode for HTTP and FTP support”
File System Toolkit (and others) – “let’s extend things to overcome POSIX limitations”
Google File System – “we can’t work with POSIX so we’ll just use a library”
Sedar – “let’s add semantic information with deep archiving, POSIX access via an NFS file server”
KBDBFS – “Berkeley DB inside the kernel, with a POSIX shim on top of it”
CRUISE – “how to get 1PB/s in an MPI (HPC) environment – don’t use POSIX”

32

FILE SYSTEMS ARE CHALLENGING

Kernel level file systems are notoriously difficult
• Non-uniform VFS layer

• Original motivation: NFS
• Different UNIX systems have different VFS (or no VFS layer at all)
• Non-UNIX/Linux systems do not have VFS (or something else)

• Challenges
• Highly parallel
• Asynchronous I/O models
• Complex edge conditions
• Multi-year efforts for experienced teams

33

FILE SYSTEMS IN USER SPACE

FUSE is a kernel level reflector
• /dev/fuse

FUSE library interacts with kernel

FUSE file system implements VFS-
like interface (defined by FUSE
library)

ext3 nfs

VFS

proc fuse

Application

Operating System (POSIX)

FUSE Library

FUSE File System

34

POSIX + EXTENSIBILITY

POSIX yields strong benefits for application compatibility

Extensibility is important to surface enhanced functionality
• Provides evolutionary path
• Permit enhancing file system semantics

35

FUSE FILE SYSTEMS

FUSE is a popular model for constructing file systems
• Advantages:

• Easier to implement
• Many languages to support FUSE
• Portable (Linux, UNIX, Mac OS X, Windows)

• Disadvantages:
• Performance
• Focuses on (weak) POSIX semantics (“good enough”)

36

FINESSE

Finesse:
• Augment FUSE
• Permits extension without

sacrificing compatibility

Application:
• Direct linked
• Shared library “override”
• Enhanced libc

ext3 nfs

VFS

proc fuse

Application

Operating System (POSIX)

FUSE Library

FUSE File System

FinesseFinesse Library

37

FINESSE BENEFITS

FUSE file sytems work without alteration
• No changes are required for some benefits (perf)
• Changes are permissible without kernel level (VFS) changes

FUSE itself can be made faster
• Permits kernel bypass for some operations
• Allows enhanced data sharing (e.g., directories)

38

EVALUATION

Evaluate impact on existing calls
• Note that Finesse imposes an additional call for open

• Send map name message (to obtain handle)
• Issue open call
• Despite this, 31% faster
• 2% slower opening non-existent files

Evaluate potential optimized interface
• Path search: frequently done, often with an array of options
• Single call permits execution in the server
• 80-88% less time to execute than FUSE
• 1.8x more time than native EXT4

39

MICRO BENCHMARKS

Create 1,000 random files in a directory
Open, then close the files
Delete the files

0

1

2

3

4

5

6

Se
co

nd
s

Open Existing Files

EXT4 FUSE Finesse

40

MICROBENCHMARKS

Attempt to open 1,000 non-existent files
in a single directory.

0

0.05

0.1

0.15

0.2

0.25

Se
co

nd
s

Open Non-existent files

EXT4 FUSE Finesse

41

MICROBENCHMARKS

Lookup every executable in the search path (path search)
Lookup every library in the library search path
(Each run = 100 iterations)

0

5

10

15

20

25

Se
co

nd
s

Path Search

EXT4 FUSE Finesse

0

10

20

30

40

50

60

Se
co

nd
s

Library Search

EXT4 FUSE Finesse

42

FUTURE WORK

Extend functionality beyond passthrough (read-only) support
Additional benchmarks (not just micro-benchmarks)
Code is unoptimized

• POSIX message queues (shared memory) – consider other IPC (e.g., ffwd work?)
• Performance is not CPU saturated – find bottlenecks and remove

Pick Further interface enhancements
• Directory mapped into shared memory
• Evaluate other common sequences and batch

Is existing FUSE the right model?

43

OBSERVATIONS

Several insightful observations during this work
• Shared kernel state (file handle, position pointer) – complicates this work
• Kernel path is almost all CPU time in these tests
• FUSE and Finesse elapsed is 2-3x CPU time

• Suggests plenty of room for improvement
• Finesse pre-lookup speeds up overall open time. Cache pre-seeding?

Relatively easy to add functionality
• How to generalize this – enable innovation via Finesse

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43

