
The Episode File System

Sailesh Chutani

Owen T. Anderson

Michael L. Kazar

Bruce W. Leverett

W. Anthony Mason

Robert N. Sidebotham

Transarc Corporation

Abstract

We describe the design of Episode,

TM

a highly portable POSIX-compliant �le system. Episode is

designed to utilize the disk bandwidth e�ciently, and to scale well with improvements in disk capacity and

speed. It utilizes logging of meta-data to obtain good performance, and to restart quickly after a crash.

Episode uses a layered architecture and a generalization of �les called containers to implement �lesets.

A �leset is a logical �le system representing a connected subtree. Filesets are the unit of administration,

replication, and backup in Episode.

The system works well, both as a standalone �le system and as a distributed �le system integrated

with the OSF's Distributed Computing Environment (DCE). Episode will be shipped with the DCE as

the Local File System component, and is also exportable by NFS. As for performance, Episode meta-data

operations are signi�cantly faster than typical UNIX Berkeley Fast File System implementations due to

Episode's use of logging, while normal I/O operations run near disk capacity.

Introduction

This paper describes the Episode

TM

�le system, the local �le system for the OSF Distributed Com-

puting Environment (DCE). Episode was intended as a �le system for distributed �le servers, and is designed

to be exported by various network �le systems, especially the OSF DCE's Distributed File Service (DFS).

Episode separates the concepts of disk storage and logical �le system structure, and provides a

number of features not found in most UNIX

R

�le systems, such as those based on the Berkeley Fast File

System [MCK 84]. In particular, Episode provides POSIX-style (Draft 11) access control lists, a useful

form of replication for slowly changing data, data representations that support storage �les of size 2

32

fragments (at least 2

42

bytes), and logging techniques that reduce post-crash recovery time and improve

the performance of operations that update meta-data. This paper explains the overall architecture of the

�le system.

Background

As part of the design process for AFS

R

4 (which became the Distributed File System component of

the DCE), the Episode design team looked at the AFS 3 [SAT 85] �le system's �le server. Two signi�cant

features of AFS 3 were viewed as valuable to preserve for Episode: access control lists and AFS 3 volumes

| which were renamed �lesets.

Access control lists are valuable in large distributed systems primarily because of the size of the

user community in such systems. In such a large community, users require a exible mechanism to specify

exactly who should be able to access their �les. The more traditional UNIX protection mechanism of

grouping everyone into one of three categories is often insu�cient to express exible controls on data.

While AFS 3 provides ACLs only on directories, Episode provides ACLs on both �les and directories,

thereby enabling POSIX 1003.6 compliance.

AFS 3 volumes support the separation of disk block storage from the concept of logical �le system

structure, so that a single pool of disk blocks can provide storage to one, or thousands of separate �le

system hierarchies [SID 86]. In Episode, each logical �le system contains its own anode table, which is

roughly the equivalent of a Berkeley Fast File System's (BSD) inode table [MCK 84]. Various anodes within

a �leset describe its root directory, as well as subsidiary �les and directories. Each �leset is independently

mountable, and | when a distributed �le system is present | independently exportable.

1

The data representation of �lesets facilitates their movement from one partition to another with

minimum disruption, even while they are exporting data in a distributed �le system. All data within

a �leset can be located by simply iterating through the anode table, and processing each �le in turn.

Furthermore, a �le's low-level identi�er, which is used by distributed �le systems and stored in directories,

is represented by its index in the �leset's anode table. This identi�er remains constant even after moving

a �leset to a di�erent partition or machine.

The general model for resource reallocation in the Episode design is to keep many �lesets on a

single partition. When a partition begins to �ll up, becomes too busy, or develops transient I/O errors,

an administrator can move �lesets transparently to another partition while allowing continuous access by

network and even local clients. Tools are provided to facilitate this move across multiple disks (or multiple

servers, using the OSF's DCE). Note that this model of resource reallocation requires the ability to put

more than one �leset on a single partition; without this, the only resource reallocation operations available

are equivalent to the exchanging of �le system contents between partitions, a move of limited utility.

Episode's implementation of �leset moving, as well as other administrative operations, depend upon

a mechanism called �leset cloning. A �leset clone is a �leset containing a snapshot of a normal �leset,

and sharing data with the original �leset using copy-on-write techniques. A cloned �leset is read-only,

and is always located on the same partition as the original read-write �leset. Clones can be created very

quickly, essentially without blocking access to the data being cloned. This feature is very important to the

administrative operations' implementation: the administrative tools use clones instead of the read-write

data for as much of their work as possible, greatly reducing the amount of time they require exclusive

access to the read-write data.

Episode's underlying disk block storage is provided by aggregates. Aggregates [KAZ 90] are simply

partitions augmented with certain operations, such as those to create, delete and enumerate �lesets.

In a conventional BSD �le system, one of the biggest practical constraints on how much disk space

a �le server can hold is how long the disk check program fsck [KOW 78] would run in the event of a crash.

Episode uses logging techniques appropriated from the database literature [HAE 83, HAG 87, CHA 88] to

guarantee that after a crash, the �le system meta-data (directories, allocation bitmaps, indirect blocks and

anode tables) are consistent, generally eliminating the need for running \fsck."

This idea is not new. The IBM RS/6000's local �le system, JFS [CHA 90], uses a combination of

operation logging for the allocation bitmap and new value-only logging for other meta-data. Hagmann

followed a similar approach in building a log-based version of the Cedar �le system [HAG 87]. On the

RS/6000, JFS also uses hardware lock bits in the memory management hardware to determine which

records should be locked in memory mapped transactional storage. This technique was earlier supported

by the IBM RT/PC's memory mapping unit, although on that system it was not used for a commercially

available �le system [CHA 88]. Veritas Corporation's VxFS [VER 91] apparently also uses new value-only

logging technology. Another system using logging technology is the Sprite LFS [ROS 90], in which all the

1

In principle at least; at present, the DCE tools only allow the exporting of all of the �lesets in a partition.

data is stored in a log. LFS uses operation logging to handle directory updates, and new value-only logging

for other operations.

Data Architecture

The central conceptual object for storing data in Episode is a container. A container is an abstraction

built on top of the disk blocks available in an aggregate. It is a generalization of a �le that provides read,

write, create and truncate operations on a sequence of bytes. Containers are described by anodes, 252 byte

structures analogous to BSD inodes [LEF 89], and are used to store all of the user data and meta-data in

the Episode �le system.

Fileset Anode Tables

Aggregate header ("superblock")

Log container

Bitmap container

Aggregate Fileset Table container
Aggregate Fileset

Table anode

Bitmap anode

Log anode

Fileset anodes

Figure 1: Bird's-eye view of an Episode Aggregate.

A bird's-eye view of an aggregate is provided in Figure 1. Each of the rectangular blocks in the �gure

represents a �le system block, and vertical columns of these blocks represent containers. Each Episode

aggregate has three specialized containers, the Bitmap container, the Log container, and the Aggregate

Fileset Table.

The bitmap container stores two pieces of information about each fragment in the aggregate: whether

the fragment is allocated, and whether the fragment represents logged or unlogged data. This last distinc-

tion is necessary because certain bu�er pool operations have to be performed when reusing a logged block

as an unlogged block, and vice versa.

The aggregate �leset table is organized as an array of anodes, one for each �leset in the aggregate. The

anode corresponding to a particular �leset describes that �leset's anode table, which is roughly equivalent

to a �le system's inode table in a BSD �le system. An Episode �leset's anode table contains individual

anodes describing that �leset's directories, �les, symbolic links and access control lists.

References to �le system anodes generally come from two sources: names found in directories, and

�le IDs arriving via network �le systems. These references name an anode by its �leset ID and its index

within the �leset's anode table. Thus, a reference to a particular anode within a �leset starts by searching

the aggregate's �leset table for the desired �leset. Once found, the �leset's anode table container contains

an array of anodes, and the speci�ed anode within the �leset is simply selected by its index. In typical

operation, all of these steps are signi�cantly sped up by caching.

The log container provides the storage allocated for the aggregate's transaction log. All meta-data

updates are recorded in this log. The log is processed as a circular bu�er of disk blocks, with the tail of

the log stored in memory and forced to disk only when necessary. The log is not actually constrained to

be on the same aggregate as the data that it is logging, but this restriction is currently imposed by our

initialization utilities.

Containers provide a uniform mechanism for data storage in Episode. All the disk data abstractions

in Episode, including the allocation bitmap, the transaction log, the �leset table, all of the individual �lesets'

anode tables, and all directories and �les are stored in containers. Because containers can dynamically

grow and shrink, all meta-data allocated to containers can, in principal, be dynamically resized. For

example, there is no need for a static allocation of anodes to an individual �leset, since a �leset's anode

table container can simply grow if a large number of �les are created within that �leset. In addition, since

the container abstraction is maintained by one piece of code, the logic for allocating meta-data exists in

only one place.

Despite the potential for dynamic resizing all of the meta-data stored in containers, certain containers

do not, in the current implementation, change dynamically. The log container does not grow or shrink

under normal system operation, since the information that ensures that the log is always consistent would

have to be placed in the same log whose size is changing. The partition's allocation bitmap is created by

the Episode equivalent of \newfs," but does not change size afterwards. Finally, directories never shrink,

except when truncated as part of deletion.

As mentioned above, a �leset clone is a read-only snapshot of a read-write �leset, implemented using

copy-on-write techniques, and sharing data with the read-write �leset on a block-by-block basis. Episode

implements cloning by cloning each of the individual anodes stored in that �leset. When an anode is

initially cloned, both the original writable version of the anode and the cloned anode point to the same

data block(s), but the disk addresses in the original anode, both for direct blocks and indirect blocks,

are tagged as copy-on-write (COW), so that an update to the writable �leset does not a�ect the cloned

snapshot. When a copy-on-write block is modi�ed, a new block is allocated and updated, and the COW

ag in the pointer to this new block is cleared. The formation of clones is illustrated in Figure 2.

Component Architecture

Episode has the layered architecture illustrated in Figure 3. The operating system independent layer

(not shown in the diagram), and the asynchronous I/O (async) layer comprise the portability layers of

the system. The operating system independent layer provides system-independent synchronization and

timing primitives. The async layer acts as a veneer over the device drivers, hiding small but signi�cant

di�erences in the interfaces between various kernels. It also provides a simple event mechanism, whose

Data Block

Indirect Block

Data Block

Indirect Block

set
COW bit

COW bit
cleared

Original anode Clone anode

Data Block

Figure 2: A Container: After Cloning and Extending.

primary purpose is providing operations for awaiting I/O completion events.

Above these base layers is the log/bu�er package. This package provides an abstraction very much

like the Unix bu�er pool, bu�ering blocks from the disk and writing them as requested. This package also

mediates all bu�er modi�cations so that they can be logged as required by the logging strategy employed

[HAE 83, MOH 89].

In Episode, all the updates to the meta-data are grouped into transactions that are atomic, meaning

that either all the updates within a transaction (if a transaction commits), or none of them (if a transaction

aborts), will be applied. By making all �le system meta-data modi�cations within atomic transactions, the

�le system can be restored to a consistent state after a crash.

Episode implements atomic transactions through a a combination of write-ahead and old value/new

value logging techniques [MOH 89]. In a nutshell, this form of logging works by logging, for every update

made to any �le system meta-data, both the original and new values of the updated data. Furthermore,

before the bu�er package allows any dirty meta-data bu�er to be written back out to the disk, it writes

out these log entries to the disk. In the event of a crash, only some of the updates to the �le system

meta-data may have made it to the disk. If the transaction aborted, then there is enough information in

the log to undo all of the updates made to the meta-data, and restore the meta-data to its state before the

transaction started. If the transaction committed, there is enough information in the log to redo all of the

meta-data updates, even those that hadn't yet made it from the disk bu�ers to the disk.

The recovery procedure runs after a crash, replaying the committed transactions and undoing the

uncommitted transactions, and thus restoring the �le system to a consistent state. Since the log only

contains information describing transactions still in progress, recovery time is proportional to the activity

at the time of the crash, not to the size of the disk. The result is that the log-replaying operation runs orders

of magnitude faster than the BSD fsck program. There are some cases in which the recovery procedure

Episode

Fileset Utilities Salvage/Verify

Vnode Interface

User Space

File System Independent Kernel

Async I/O

VFS+ Interface Layer

Vnode Operations

Directory

ACL

Anode Layer

Fileset

Buffer

Log Recovery

XCREDOperations

Figure 3: Layering in Episode.

can not regenerate a consistent �le system, however, such as when hard I/O errors occur while updating

critical meta-data. In such cases, the Episode salvager utility needs to be run; the salvager's performance

characteristics are very similar to fsck.

The anode layer manages all references to data stored in containers. The container abstraction pro-

vides for three modes of storage: The inline mode uses extra space in the anode to store small quantities

of data. This allows for e�cient implementation of symbolic links, ACLs, and very small �les. The frag-

mented mode enables several small containers, too big for inline storage, to share a disk block. Fragments

are used for �les smaller than a block. Finally, the blocked mode describes large containers. Four levels of

indirect blocks [MCK 84] can be used to address 2

31

block addresses. Due to other restrictions however,

the maximum size of a �le is bound by MIN(2

32

� fragmentSize, 2

31

� blockSize). Thus, if the fragment

size is 1K, and the block size is 8K, a �le can grow to 2

42

bytes.

2

Block allocation policies try to ensure

2

Additional kernel modi�cations, such as changes to the lseek system call interface, are required to use �les of this size

contiguity, and support is provided for sparse �les.

Directories are implemented straightforwardly as specially typed containers. Episode augments the

directory implementation with hash tables to reduce search processing. Each 8K directory page contains

its own separate hash table.

The Episode vnode layer extends the vnode operations designed by Sun Microsystems [KLE 86,

ROS 90] with support for ACLs and �lesets. In addition, the vnode operations that read or write �les

are integrated with the virtual memory system on SunOS 4.0.3c and AIX 3.1, allowing Episode to use

the virtual memory pool as a �le cache. This greatly improves the performance of the read and write

operations on �les, due to the increased cache size. Episode has also been optimized to detect sequential

access and coalesce adjacent reads and writes.

Logging Architecture

Typical transactional systems use two-phase locking (2PL) for ensuring consistency of data that is

modi�ed within a transaction. In two-phase locking, a transaction may, from time to time, obtain new

locks, but it can never release any locks until the second \phase," when the transaction commits. By

forbidding the release of locks until after the commit, this scheme guarantees that no other transactions

ever read uncommitted data. Without two-phase locking rules, one transaction could lock, modify and

commit data already modi�ed and unlocked by a still-running transaction. An example is given below.

2PL ensures serializability and atomicity of the transactions, but at a cost: it reduces the concurrency

in the system if the data being locked is a hot spot, since all the transactions that wish to obtain a lock

on the hot spot must wait for the entire transaction currently holding the lock to complete.

In addition, using 2PL can add complexity to interface design in layered, modular systems. In a

layered system, code in a higher layer typically calls code in a lower layer, which may lock its own private

objects for the duration of a call. Quite often these locks are not exported. In order to use 2PL in such

a model, one has to export details of the locks obtained by the lower level modules, since the locks they

obtain remain locked until the high level transaction commits, and failure to set these low-level locks in

the proper order could lead to deadlock. Two-phase locking thus greatly increases the complexity of such

a layered interface.

To better understand the problem addressed by two-phase locking, which is known in the database

literature as the problem of cascading aborts, consider the scenario in Figure 4, where two-phase locking is

not performed:

ub2lb2ub1lb1la1

transaction 1

transaction 2

time

s1 e2 crash e1s2

Figure 4: Formation of an Equivalent Class.

Transaction 1 starts at time s1, and locks two objects, A and B, at times la1 and lb1, respectively.

Transaction 1 shortly thereafter unlocks object B at time ub1. Next, before transaction 1 commits,

transaction 2 modi�es object B: transaction 2 starts at time s2, and locks object B at time lb2 and �nally

within most kernels.

unlocks object B at time ub2. Finally, transaction 2 commits this change to object B at time e2. Now,

assume the system crashes shortly thereafter, at the time marked crash. After the log replay occurs,

object B will contain the changes made by transactions 1 and 2, since transaction 2 committed these

changes to this object. However, object A does not have the change made by transaction 1 committed,

since transaction 1 never committed. The result is that only one of the changes made by transaction 1,

the change to object B, is actually made permanent.

Episode's transaction manager avoids these problems by using a type-speci�c approach to transac-

tional locking instead of two-phase locking. Episode transactions can acquire locks when they need them,

and drop them as soon as they are �nished using them, rather than waiting for the transaction's end. This

allows for greater concurrency in the system, but required alternate mechanisms to prevent uncommitted

data from being read by other transactions.

In order to avoid the problem of updating uncommitted data, Episode aborts transactions that might

have otherwise been able to commit, if a crash intervenes. Speci�cally, all active transactions that lock the

same object during their lifetime are merged into an equivalence class (EC). An EC has the property that

either all of its transactions commit or none do.

3

In the example above, transaction 1 and 2 would form

an EC. An EC can be viewed as an umbrella transaction that subsumes all the transactions that belong

to it. ECs are formed whenever active transactions exhibit read-write sharing amongst themselves.

If the system crashes before all of the transactions in an EC have committed, all the transactions in

the EC are aborted. It is therefore desirable to minimize the duration and the number of ECs formed in the

system. To this end, transactions typically delay the use of \hot" data until as close to the transaction's

end as possible to minimize the chance that some other transaction will have to read this data before it

commits.

The primary goal of the logging system in Episode is to guarantee the consistency of the �le system.

This decision impacted a number of other design choices:

Meta-data changes to the disk itself can often be deferred, unless speci�cally requested by an oper-

ation like fsync. Consistency of the �le system doesn't require that the system be current.

No transactional guarantees are required about the user-data, since consistency of the �le system

requires only that the meta-data be consistent. Episode logs only meta-data changes. Although restricting

logging to meta-data greatly reduces log tra�c, mixing logged and unlogged blocks in the same �le system

introduces some complexity.

To illustrate some of these issues, note that if a crash occurs between the time that a data block

is allocated to a �le and the time that the block is �rst written, the former data may appear in the new

�le as uninitialized data. The problem arises because the allocation update commits transactionally while

the data update fails, since the data update occurs outside of the transaction system. Episode �xes this

problem by starting another transaction when the block is allocated, and ending it when the �rst write

to it completes. If the system crashes and the transaction aborts, the recovery procedure for this special

transaction zeroes the contents of the block.

Since users do not de�ne the start and end times of transaction, transaction sizes can be bounded

when they begin. This allows the use of a very simple algorithm to ensure that running transactions never

exceed the space available in the log. Transactions that run too long or modify too much data represent

programming errors.

As mentioned above, Episode logs both the new value and the old value of the data being modi�ed.

A number of other systems simply log the new value of the modi�ed data. In systems that log only new

data, dirty data can not be written out to its �nal home on the disk until the transaction actually commits,

since the log does not contain enough information to undo the updates, and the transaction manager can

3

Each transaction by itself forms an equivalence class with one member.

not redo the updates to get to a consistent state until the transaction has ended and thus made all of its

modi�cations. Our design choice was signi�cantly inuenced by our concern that using new value-only

logging would seriously constrain the bu�er package's choice of which bu�ers to write out to the disk, and

when to write these bu�ers. Old value / new value logging, on the other hand de-couples the writing of

bu�ers from the end of transactions, at the expense of having to write more data to the log.

Introducing logging in Episode a�ected the implementation of all the vnode operations. The bound

on the transaction size required by our log space allocation policy dictated that complicated and time

consuming operations be broken up into smaller bounded operations, each of which can be bracketed

transactionally. For example, a delete of a large �le is broken into a sequence of separate �le truncation

operations, followed by a deletion of the empty �le. After each transaction, the �le system is consistent, if

not in the �nal desired state.

Performance

This section details the result of running benchmarks that measure the performance of Episode and

a reference �le system (The IBM RS/6000's JFS or Sun's BSD �le system), both on meta-data and I/O

operations. Comparison with Sun's BSD illustrates the e�ects of logging in Episode, while comparison

with JFS, which also uses logging, measures the e�ciency of our implementation. All measurements were

taken on the following platforms:

� A SUN SPARCstation 1 running SunOS 4.0.3c, with 8MB memory and 200MB Seagate ST1239NS

SCSI disk (peak data transfer rate 3.0 Mbytes/sec average latency 8.33 msec).

� An IBM RS/6000 Model 320 running AIX 3.1, with 32MB of memory and 320MB IBM 0661-371

SCSI disk (peak data transfer rate 2.0 Mbytes/sec, average latency 7.0 msec).

Our performance goals were that Episode perform meta-data update operations signi�cantly faster

than the Berkeley Fast File system, while doing large I/O operations essentially as fast as the native

disk driver would perform large transfers. We expect that our meta-data update operations would be

considerably faster than BSD's because Episode batches meta-data updates into writes to the �le system

log.

In terms of the experiments done in this section, we thus would hope to do meta-data update

operations considerably faster than the SunOS BSD implementation, and normal read and write operations

essentially as fast as the JFS implementation.

One would also expect that Episode would perform I/O somewhat faster than the SunOS 4.0.3

BSD implementation. However, our integration of Episode with the SunOS virtual memory system is not

yet complete. In particular, on that platform, Episode does no read-ahead, nor are any write operations

asynchronous, and these problems signi�cantly impact the SunOS read and write performance �gures.

Under AIX 3.1, we have completed this level of virtual memory system integration, and on that platform,

we expected that our performance would be essentially as good as IBM's JFS. As an aside, the problems

in doing read-ahead and asynchronous I/O in AIX 3.1 and SunOS 4.X are quite similar, and we do not

expect any serious problems in completing the SunOS implementation.

In the next sections, we present the results of various performance tests, and some discussion on the

results.

Connectathon Benchmark

The connectathon test suite tests the functionality of a UNIX-like �le system by exercising all the

�le system related system calls. It consists of nine tests:

� Test1 creates a multi-level directory tree and populates it with �les. A meta-data update intensive

test.

� Test2 removes the directories and �les created by test1. A meta-data update intensive test.

� Test3 does a sequence of getwd and stat on the same directory. Primarily meta-data read operations.

� Test4 executes a sequence of chmod and stat, on a group of �les. A meta-data update intensive test.

� Test5 writes a 1 MB �le sequentially, and then reads it. Primarily I/O operations.

� Test6 reads entries in a directory. Primarily meta-data read operations.

� Test7 calls rename and link on a group of �les. A meta-data update intensive test.

� Test8 creates symbolic links and reads them by symlink and readlink calls respectively, on multiple

�les. Primarily a meta-data update intensive test, with signi�cant meta-data reading, too.

� Test9 calls statfs.

Figures 5 and 6 compare Episode performance with JFS on an RS/6000, and with BSD on a

Sparcstation.

4

The most interesting numbers in this section come from a comparison of Episode and BSD on the

Sun platform. Those tests representing primarily meta-data updates (tests 1, 2, 4, 7 and 8) show the

bene�ts of logging on meta-data updates; in all but one test, Episode does at least twice as well as BSD in

elapsed time. The test that gives Episode di�culty, test2, does a lot of directory I/O operations. These

operations use a private bu�er cache, one that appears from our examination of read and write counts to

be too small.

In addition, we compared Episode with another log-based �le system, JFS. This was done as an

additional check on our implementation, to verify that our performance was approaching that of a highly

tuned commercial �le system with a somewhat similar architecture. These �gures show that Episode

performance on meta-data operations is comparable or better than that of JFS in terms of elapsed time.

In addition to comparing Episode in elapsed time, we also measured the CPU utilization in Figures

7 and 8. In both of these sets of �gures, Episode's CPU utilization is higher than that of the native �le

system. We will discuss reasons for this below, but we should point out that we expect this situation to

improve as Episode's performance is tuned further. In particular, for the meta-data reading tests, Episode

is CPU-bound, and we expect further reductions in CPU usage to map directly to reductions in elapsed

time.

Meta-data updates Other

test1 test2 test4 test7 test8 test3 test5 test6 test9

Elapsed Episode 4 3 2 1 2 10 2 4 0

Time JFS 6 3 1 5 6 3 10 8 0

Figure 5: Comparison of Episode with JFS on the RS/6000 platform, executing the Connectathon tests.

The numbers listed are averages of several runs. All �gures are elapsed times in seconds.

Other Benchmarks

We also ran two tests representing a mix of �le system operations: the modi�ed Andrew benchmark

[OUS 90, HOW 88], and the NHFSTONE benchmark from Legato Systems (v1.14).

4

In some instances, elapsed time appears to be less than the CPU time, due to di�erence in the granularity of measurement.

Meta-data updates Other

test1 test2 test4 test7 test8 test3 test5 test6 test9

Elapsed Episode 7 6 4 2 4 0 46 6 1

Time SunOS 15 6 17 11 13 0 25 14 0

Figure 6: Comparison of Episode with BSD on the Sun platform, executing the Connectathon tests. The

numbers listed are the averages of several runs. All �gures are elapsed times in seconds.

Meta-data updates Other

test1 test2 test4 test7 test8 test3 test5 test6 test9

CPU Episode 1.7 1.2 2.6 1.7 2.0 10.0 1.8 4.0 0.6

Time JFS 0.6 0.5 1.0 0.8 0.9 2.9 1.9 1.4 0.3

Figure 7: Comparison of Episode with JFS on the RS/6000 platform, executing the Connectathon tests.

The numbers listed are averages of several runs. All �gures are CPU times in seconds.

The modi�ed Andrew benchmark was originally devised to measure the performance of a distributed

�le system, and operates in a series of phases, as follows:

The benchmark begins by creating a directory tree, and copying the source code for a program in

that tree. It then performs a stat operation on every �le in the hierarchy. It subsequently reads every

�le as part of compiling them, using a modi�ed GNU C compiler that generates code for an experimental

machine.

The results of running this benchmark on the RS/6000 con�guration above were that JFS completed

the test in 90.0 seconds, while Episode took 102.2 seconds. Most of the di�erence between the two tests

occurred on the stat and copy phases of benchmark.

The NHFSTONE benchmark from Legato Systems, Inc. (v1.14) was altered to be a local �le system

benchmark instead of an NFS benchmark. The dependence on kernel NFS statistics was removed and the

benchmark was run locally on the server rather than over the network from a client that has mounted an

NFS exported �le system. The standard mix of operations was used to test the throughput of JFS and

Episode, i.e., 13% fstat, 22% read, 15% write, etc. The tests were run on a 32MB IBM RS/6000 running

AIX 3.1 release 3003. A Fujitsu M2263 disk was used to hold the �le systems in the tests.

The test results indicate that JFS reaches a peak throughput level of about 233 �le system operations

per second (with 2 processes) while Episode reaches about 300 operations per second (with about 10

processes). In doing so, Episode used roughly twice as much CPU per operation as JFS to achieve these

higher throughput levels.

In short, Episode ran slightly slower than JFS on the modi�ed Andrew benchmark, and slightly faster

than JFS on the NHFSTONE benchmark. We feel that the performance of Episode on these benchmarks

is quite acceptable, given the tuning that will be done as vendors ship Episode.

Read and Write

Episode's ability to utilize the available disk bandwidth is shown in the comparison with JFS on

the RS/6000 on the read and write tests. Two types of tests were run, one type measuring cached read

performance, and one type measuring uncached read and write performance.

Both the cold cache read performance numbers (Figure 9) and the cold cache write performance

numbers (Figure 11) show quite similar performance between JFS and Episode. We believe that this

indicates that Episode's algorithms for doing I/O operations in large chunks are working reasonably well.

The Episode warm cache read rate is a bit slower than the corresponding JFS rate, as can be seen in

Meta-data updates Other

test1 test2 test4 test7 test8 test3 test5 test6 test9

CPU Episode 2.8 2.1 3.8 2.0 4.0 0.7 15.4 5.1 0.9

Time SunOS 1.3 0.8 2.0 0.3 1.9 0.3 6.1 1.5 0.4

Figure 8: Comparison of Episode with BSD on the Sun platform, executing the Connectathon tests. The

numbers listed are the averages of several runs. All �gures are CPU times in seconds.

0

0.2

0.4

0.6

0.8

1

1.2

1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M 2M 4M 8M

M
B
y
t
e
s
/
s
e
c

Bytes (log scale)

epi
jfs

Figure 9: Comparison of Episode and JFS Read Rates - Cold VM Cache.

Figure 10. This rate measures how quickly the �le system can locate its data and copy it, or map it, from

the virtual memory system into the caller's bu�ers. As such, it is not as much of a �le system performance

tests as a virtual memory integration performance test. These �gures peak between 16 and 20 megabytes

per second, well above the disk's actual data transfer rate.

It is clear from comparing the warm and cold read performance numbers that the key to good system

performance is successful integration with the virtual memory system.

Performance Summary

Episode performs well in handling basic read and write operations, doing I/O in as large a chunk as

useful. In this area of our design, we borrowed heavily from the work done on both AIX's JFS and SunOS's

BSD �le systems [MCV 91] on obtaining extent-like performance from BSD-style �le system organizations.

Episode's greatest performance bene�ts come in its performance on meta-data operations. In these

operations, the use of logging greatly reduces the number of synchronous write operations required, signif-

icantly improving system performance.

In addition, Episode is a relatively new �le system, and is still undergoing signi�cant performance

measurement, pro�ling and tuning. We used the tracing and pro�ling facility on the RS/6000 to produce

traces that recorded each procedure entry and exit along with timing information. A detailed study of the

these traces on micro-benchmarks identi�ed a wealth of targets for optimization. In particular we found

that:

0

2

4

6

8

10

12

14

16

18

20

1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M 2M 4M 8M

M
B
y
t
e
s
/
s
e
c

Bytes (log scale)

epi
jfs

Figure 10: Comparison of Episode and JFS Read Rates - Warm VM Cache.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M 2M 4M 8M

M
B
y
t
e
s
/
s
e
c

Bytes (log scale)

epi
jfs

Figure 11: Comparison of Episode and JFS Write Rates.

� Episode is not passing enough context information between layers,

� certain invariant computations are being performed repeatedly,

� common data paths are using expensive general-purpose interfaces, where a special case data path

would be more e�cient, and

� various parameters, like the size of in-core caches for the vnodes, anodes and bu�ers, have not been

tuned.

We expect CPU usage to drop considerably as we further optimize the code.

The integration of Episode with the virtual memory system under SunOS is still incomplete; in

particular, read-ahead and asynchronous write are not yet implemented on that platform. As a result,

the performance of Episode on the Sun, using test5, is relatively poor as compared with BSD. On the

RS/6000 Episode is better integrated with the native virtual memory system, does perform read-ahead

and asynchronous writes, and exhibits read-write performance comparable with the local �le system, JFS.

This leads us to expect that the implementation on the Sun will perform equally well, once the Sun port

is completed.

Recovery Time

Episode's time to recover depends primarily on the size of the active portion of transaction log. The

active portion of the log is that part of the log that needs to be replayed after a crash, and must include all

of the uncommitted transactions, since these must be undone in the event of a crash. The active portion

of the log may go back even further, should the bu�er cache still contain dirty meta-data blocks that were

modi�ed by committed transactions. In this case, the updates are in the log and only in the log, requiring

the replay of that part of the log in the event of a crash. The operation of writing bu�ers modi�ed by

committed transactions and discarding those portions no longer required to ensure the permanence of those

transactions is generally called checkpointing the log.

In order to estimate the size of the active portion of the log after a crash, note �rst that no matter how

often the system is checkpointed, there is no way to avoid an active portion of the log containing at least

those transactions that are currently executing. Thus, as system activity at the time of a crash increases,

we should see the minimum recovery time rise correspondingly. In addition, if the log is checkpointed only

every T seconds, as is the case with Episode, then the active portion of the log can rise to include all the

transactions that modi�ed the dirty bu�ers still resident in the bu�er cache. Of course, Episode will not

permit the log to become full, but it is di�cult to guarantee any other bound on the size of the active

portion of the log.

Of course, the time to replay a block of the active log is not constant, but is bounded: There is a

maximum number of meta-data blocks whose updates can be described by a block of the log, but many

log blocks will e�ect considerably fewer meta-data blocks.

From the above discussion, the reader can see that the recovery time for an Episode partition should

rise in proportion to the number of processes actively modifying the �le system at the time of the crash,

but that there will be a number of recovery calls that take somewhat longer than the minimum, because

of uncheckpointed, but committed, transactions.

In order to verify this state of a�airs, we ran some experiments, timing recovery on a 900 megabyte

aggregate, with a 9 megabyte log, in two con�gurations: with 6 megabytes of new data stored in the

aggregate, and with 260 megabytes of new data stored in the aggregate.

After crashing the system with 10 active processes modifying the 6 MB �le, recovery took between

4.1 and 6.7 seconds to execute, while after crashing the system with 20 active processes modifying the same

6 MB �le system, recovery took 10.5 seconds on the single instance we ran. Similarly, in an experiment

on the 260 MB �le system, crashing the system with 10 active processes took between 5.1 and 8.8 seconds

to recover, while crashing the system with 20 active processes took 2.7 seconds to recover on the single

instance we ran. From this data, we can see that recovery takes essentially the same amount of time on

small and large aggregates.

On the other hand, there was a noticible, if highly varying, correspondence between system activity

at the time of a crash, and recovery time. In tests with the 6 megabyte �le system, recovering after a crash

with one active process took between 1.7 and 2.7 seconds. Recovering after a crash with 5 processes took

between 1.9 and 9.2 seconds. Recovering with 10 processes took between 4.1 and 6.7 seconds. Recovering

with 20 processes took 10.5 seconds (one data point), and recovering after a crash with 49 active processes

took 19.6 seconds.

In conclusion, we note that the time to recover depends in a complex way upon a number of variables,

none of which, however, are the aggregate size. Despite this complexity, it also appears that in typical

con�gurations, recovery times will be under 30 seconds.

Status

Episode is functionally complete, and is undergoing extensive stress testing and performance analysis.

Episode will ship with the DCE as the Local File System (LFS) component, and also works with Sun's

Network File System [SAN 85]. Episode is designed to be portable to many kernels, and presently runs on

SunOS 4.0.3c, SunOS 4.1.1 and AIX 3.1.

The design of Episode began in 1989, and full-scale implementation began in January 1990. The

�le system was �rst tested in user space and then plugged into the kernel, saving considerable amounts of

debugging in the kernel environment. The present code, which includes substantial debugging code, test

suites, sca�olding to run tests in user space, and utilities, is about 70K lines of C, according to \wc".

Conclusions

The abstraction of containers has proved to be very useful. By separating the policy from the

mechanism for placing the data on the disk, the container abstraction helps isolate the code responsible

for data location and allocation, as well as making many structures extensible \for free." The resulting

exibility in data layout policies enables future releases of Episode to use more knowledge in allocating

space for user data and meta-data, while leaving the disk format itself formally unchanged.

Our experience with Episode also shows that a general purpose transactional system is not required

for a �le system. The Episode log implements only a small subset of the functionality needed in a database

system, and our log and recovery packages are but a fraction of the size of those in traditional database

products.

On the other hand, the Episode transaction manager must deal with a few technicalities not present

in most database systems. There are some complications introduced by a design storing both meta-data and

unlogged user data on the same disk. Furthermore, the decision to form equivalence classes of transactions

instead of using two-phase locking also required new code.

The original motivation for implementing a log-based system was fast crash recovery, but we are

obtaining substantial performance bene�ts as well. Logging has improved the performance of meta-data

updating operations and reduced the cumulative disk tra�c by permitting Episode to batch repetitive

updates to meta-data.

The key to obtaining good performance of read and write operations was a successful integration

with the virtual memory system, and performing I/O in large blocks. We con�rmed the results that

disk bandwidth is utilized more e�ciently when data transfers occur in large chunks. The virtual memory

system provides a very e�ective memory cache for �les, and also enables the merging of requests for adjacent

disk blocks into one large request. In general, however, virtual memory systems exhibit a great deal of

idiosyncratic behavior, and are su�ciently diverse that the integration process is very di�cult.

Acknowledgements

We are grateful to Alfred Spector for comments and corrections. Thanks go to Mike Comer, Je�rey

Prem, Peter Oleinick and Phil Hirsch for running some of the benchmarks, and the POSIX compliance

tests.

We would also like to thank various people in IBM for discussing various �le system performance

issues with us, including Al Chang, Carl Burnett, Bryan Harold, Liz Hughes, Jack O'Quin, and Amal

Shaheen-Gouda.

References

CHA 88 A. Chang, and M. F. Mergen. 801 Storage: Architecture and Programming. ACM Trans.

Computer Systems 6, February 1988.

CHA 90 A. Chang, M. F. Mergen, R. K. Rader, J. A. Roberts, and S. L. Porter. Evolution of storage facil-

ities in AIX Version 3 for RISC System/6000 processors. IBM Journal of Research and Development,

Vol. 34, No. 1, January 1990.

GIN 87 Robert A. Gingell, Joseph P. Moran, and William A. Shannon. Virtual memory architecture in

SunOS. Usenix Conference Proceedings, Summer 1987.

HAE 83 T. Haerder, A. Reuter. Principles of Transaction-Oriented Database Recovery. Computing Sur-

veys, Vol. 15, No. 4, December 1983.

HAG 87 Robert B. Hagmann. Reimplementing the Cedar File System Using Logging and Group Commit.

Proceedings of the 11th Symposium on Operating Systems Principles, November 1987.

HOW 88 J. H. Howard, M. L. Kazar, S. G. Nichols, D. A. Nichols, M. Satyanarayanan, R. N. Sidebotham,

and M. J. West. Scale and Performance in a Distributed File System. ACM Transactions on Com-

puter Systems, Vol. 6, No. 1, February 1988.

KAZ 90 Kazar, Leverett et al. DEcorum File System Architectural Overview. Usenix Conference Pro-

ceedings, June 1990.

KLE 86 S. R. Kleiman. Vnodes: an Architecture for Multiple File System Types in Sun UNIX. Usenix

Conference Proceedings, Summer 86.

KOW 78 T. Kowalski. FSCK: the UNIX system check program. Bell laboratory, Murray Hill, NJ 07974.

March 1978.

LEF 89 S. Le�er, M. McKusick, M. Karels, and J. Quarterman. The Design and Implementation of the

4.3BSD UNIX Operating System. Addison-Wesley, 1989.

MCK 84 McKusick, M.K., W.N. Joy, S.J. Le�er, R.S. Fabry. A Fast File System for UNIX. Transactions

on Computer Systems, Volume 2, No. 3, August 1984.

MCK 90 M. McKusick, M. J. Karels, and Keith Bostic. A Pageable Memory based File System. Usenix

Conference Proceedings, Summer 1990.

MCV 91 L. W. McVoy, and S. R. Kleiman. Extent-like Performance from a UNIX File System. Usenix

Conference Proceedings, Winter 91.

MOG 83 Je�rey Mogul. Representing Information about Files. Computer science department, Stanford

university, CA 94305. September 1983.

MOH 89 C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, P. Schwarz. ARIES: A Transaction Recov-

ery Method Supporting Fine-granularity Locking and Partial Rollbacks using Write-ahead Logging.

Research report, IBM research division, Almaden Research Center, San Jose, CA 95210. January

1989.

OUS 90 John K. Ousterhout. Why aren't Operating Systems getting faster as fast as Hardware ? Usenix

Conference Proceedings, June 1990.

PEA 88 J. K. Peacock. The Counterpoint Fast File System. Usenix Conference Proceedings, Winter 1988.

RED 89 A. L. Narasimha Reddy, and P. Banerjee. An Evaluation of Multiple-Disk I/O Systems. IEEE

Transactions on Computers, Vol. 38, No. 12, December 1989.

REN 89 R. Van Renesse, A. S. Tannenbaum, and A. Wilschut. The Design of a High-Performance File

Server. Proc. Ninth Int'l Conf. on Distributed Comp. Systems, IEEE, 1989.

ROS 90 Mendel Rosenblum, John K. Ousterhout. The LFS Storage Manager. Usenix Conference Pro-

ceedings, June 1990.

ROSD 90 David S.H. Rosenthal. Evolving the Vnode Interface. Usenix Conference Proceedings, Summer

1990.

SAN 85 R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design and Implementation of

the Sun Network File System. Usenix Conference Proceedings, Summer 1985.

SAT 85 M. Satyanarayanan, J. H. Howard, D. A. Nichols, R. N. Sidebotham, and A. Z. Spector. The

ITC Distributed File System: Principles and Design. Proceedings of the 10th ACM Symposium on

Operating Systems Principles, 1985.

SID 86 R. N. Sidebotham. Volumes: The Andrew �le system data structuring primitive. European Unix

User Group Conference Proceedings, August 86.

STA 91 C. Staelin, and H. Garcia-Molina. Smart File Systems. Usenix Conference Proceedings, Winter

1991.

VER 91 Veritas Software Corporation. VERITAS Overview (slides). Veritas Software, 4800 Great Amer-

ica Parkway, Suite 420, Santa Clara, CA 95054.

Biographical Information

Owen T. Anderson is a member of the File Systems Development group. He worked on �le system

security while a member of the Andrew File System group at Carnegie Mellon University's Information

Technology Center. At Transarc, he continues this specialization and also contributes to design e�orts and

kernel development. Before coming to Carnegie Mellon, Mr. Anderson worked for ten years at the Lawrence

Livermore National Laboratory in Livermore, California. There he obtained a wide variety of experience

ranging from the design of an operating system and two multi-processor architectures to debugging digital

hardware. Owen Anderson graduated from the Massachusetts Institute of Technology in 1979 with an S.B.

degree in Physics. He can be reached via e-mail at ota@transarc.com.

Sailesh Chutani has been involved with the Andrew File System (AFS) project since June 1988

when he joined Carnegie Mellon University's Information Technology Center. At Transarc, he was one of

the designers of AFS 4. He continues work on the design and development of AFS. Mr. Chutani holds an

M.S. in Computer Science from the University of North Carolina at Chapel Hill and a B.Tech. in Computer

Science and Engineering from the Indian Institute of Technology at Kanpur, India. He can be reached via

e-mail at chutani@transarc.com.

In his role as Manager of File Systems Architecture, Dr. Michael L. Kazar, one of Transarc's

founders, has full responsibility for the development of Transarc's distributed �le systems products. This

undertaking is a natural combination of Dr. Kazar's previous work as \Senior Data Stylist" at Carnegie

Mellon University's Information Technology Center. In that position since 1984, he was instrumental in

the design and implementation of the Andrew File System, assuming responsibility for the management of

that project in early 1988. While at the ITC, Dr. Kazar also worked on other aspects of �le systems and on

user interfaces. Dr. Kazar received two S.B. degrees from the Massachusetts Institute of Technology, and

his Ph.D. in Computer Science from Carnegie Mellon University, in the area of optimizing multiprocessor

computations to minimize communications costs. He can be reached via e-mail at kazar@transarc.com.

Prior to joining Transarc, Dr. Bruce W. Leverett worked for seven years at Scribe Systems

(formerly Unilogic). There he participated in development of the Scribe document production system,

including the Scribe text formatter and an X-Windows-based PostScript Previewer. He developed

source-to-source program translation technology to enable Scribe software to be ported to multiple plat-

forms. Dr. Leverett completed his doctoral dissertation at Carnegie Mellon in 1980. His thesis research, in

optimizing compilers, was an outgrowth of previous work in that �eld, including development of compilers

for the BLISS language, and research in language design and implementation for multiprocessors, including

implementation of a variant of Algol 68 for the Hydra operating system. He holds an A.B. from Harvard

in Physics and Chemistry, completed in 1973. While at Harvard, he implemented a chess-playing program,

which competed in the ACM Computer Chess Championship in 1972. He can be reached via e-mail at

bwl@transarc.com.

W. Anthony Mason is a member of the AFS team and specializes in data communications. Prior

to joining Transarc, Mr. Mason served as a Systems Programmer in the Distributed Systems Group at

Stanford University in the Department of Computer Science. He was involved in the development of both

the V distributed system and the VMTP transport protocol. Mr. Mason received his B.S. degree in

Mathematics from the University of Chicago. He can be reached via e-mail at mason@transarc.com.

Robert N. Sidebotham was a key designer of the Andrew File System at the Information Tech-

nology Center of Carnegie Mellon University, and the inventor of volumes (now �lesets), which pervade the

design, implementation, and administration of AFS and its descendents. Bob has been involved in a variety

of other software projects, from digitizing and imaging of satellite data from the Canadian satellite, ISIS-II,

to the rendering of architectural drawings, to the design and implementation of an operating system for

Sweden's Teletex system. He is also a founder of a Pittsburgh-based niche software company, which he left

in 1991 to join Transarc. Mr. Sidebotham graduated from the University of Calgary, Alberta, Canada, in

1974, with a BSc. in Computing Science. He can be reached via e-mail at bob@transarc.com.

Availability

Episode is designed to be portable to many kernels, and presently runs on SunOS 4.0.3c, SunOS

4.1.1 and AIX 3.1. It is available as the Local File System component of the OSF's Distributed Computing

Environment, and is also licensable as a separate standalone product from Transarc Corporation.

